Journal of High Energy Physics

, 2012:127

Enhancement of loop induced 125 GeV Higgs pair production through large-extra-dimensions model at the LHC

Article

Abstract

Based on the analysis of 5 fb−1 of data at the LHC, the ATLAS and CMS collaborations have presented evidence for a Higgs boson with a mass in the 125 GeV range. We consider the 125 GeV neutral Higgs pair production process in the context of large-extra-dimensions (LED) model including the Kaluza-Klein (KK) excited gravitons at the LHC. We take into account the LED effects coming from gluon-gluon fusion and quark-antiquark collision channels as well as their corresponding next-to-leading order (NLO) QCD loop induced corrections. We analyse their impacts on both the total cross section and some key distributions. Indeed, ppHH has the clear advantage of a lower standard model (SM) background compare to process like ppjj, though its SM prediction is very small, it is shown that the LED model raises the cross section of Higgs pair production compare to its SM prediction and enhance the transverse momentum \( \left( {p_T^H} \right) \) and invariant mass (MHH) distributions especially at high scales of \( p_T^H \) and MHH. By including the NLO QCD loop corrections, the scale dependence of total cross section can be reduced obviously. Choose suitable decay modes like \( H\,H\to b\overline{b}\gamma \gamma \) or \( H\,H\to b\overline{b}{\mu^{-}}{\mu^{+}} \) and some simple cuts, we can strongly reduce the SM background but keep most of the LED effects, leading Higgs pair production a promising channel to search LED effects.

Keywords

Phenomenology of Large extra dimensions NLO Computations 

References

  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSGoogle Scholar
  2. [2]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D. Kapner et al., Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett. 98 (2007) 021101 [hep-ph/0611184] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Plehn, M. Spira and P. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  5. [5]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].ADSGoogle Scholar
  6. [6]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Sun et al., Neutral Higgs boson pair production in standard model with the fourth generation quarks at LHC, Commun. Theor. Phys. 41 (2004) 73 [INSPIRE].Google Scholar
  9. [9]
    L. Wang, W. Wang, J.M. Yang and H. Zhang, Higgs-pair production in littlest Higgs model with T-parity, Phys. Rev. D 76 (2007) 017702 [arXiv:0705.3392] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. de Sandes and R. Rosenfeld, Higgs pair production in models with universal extra dimensions, Phys. Lett. B 659 (2008) 323 [arXiv:0706.2665] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C. Kim, K.Y. Lee and J.-H. Song, Enhancement of the Higgs pair production at CERN LHC: the MSSM and extra dimension effects, Phys. Rev. D 64 (2001) 015009 [hep-ph/0009231] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    J.L. Hewett, Indirect Collider Signals for Extra Dimensions, Phys. Rev. Lett. 82 (1999) 4765.ADSCrossRefGoogle Scholar
  15. [15]
    P. Mathews, V. Ravindran, K. Sridhar and W.L. van Neerven, Next-to-leading order QCD corrections to the DrellYan cross section in models of TeV-scale gravity, Nucl. Phys. B 713 (2005) 333.ADSCrossRefGoogle Scholar
  16. [16]
    P. Mathews and V. Ravindran, Angular distribution of Drell-Yan process at hadron colliders to NLO-QCD in models of TeV scale gravity, Nucl. Phys. B 753 (2006) 1 [hep-ph/0507250] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Kumar, P. Mathews and V. Ravindran, PDF and scale uncertainties of various DY distributions in ADD and RS models at hadron colliders, Eur. Phys. J. C 49 (2007) 599 [hep-ph/0604135] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O.J. Eboli, T. Han, M. Magro and P. Mercadante, Diphoton signals for large extra dimensions at the Tevatron and CERN LHC, Phys. Rev. D 61 (2000) 094007 [hep-ph/9908358] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K.-m. Cheung and G.L. Landsberg, Drell-Yan and diphoton production at hadron colliders and low scale gravity model, Phys. Rev. D 62 (2000) 076003 [hep-ph/9909218] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Kumar, P. Mathews, V. Ravindran and A. Tripathi, Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders, Phys. Lett. B 672 (2009) 45 [arXiv:0811.1670] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Kumar, P. Mathews, V. Ravindran and A. Tripathi, Direct photon pair production at the LHC to order αs in TeV scale gravity models, Nucl. Phys. B 818 (2009) 28 [arXiv:0902.4894] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Kober, B. Koch and M. Bleicher, First Order Calculation of the Inclusive Cross Section pp to ZZ by Graviton Exchange in Large Extra Dimensions, Phys. Rev. D 76 (2007) 125001 [arXiv:0708.2368] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Gao, C.S. Li, X. Gao and J.J. Zhang, Signature of Large Extra Dimensions from Z boson pair production at the CERN Large Hadron Collider, Phys. Rev. D 80 (2009) 016008 [arXiv:0903.2551] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Agarwal, V. Ravindran, V. Tiwari and A. Tripathi, Z boson pair production at the LHC to Os) in TeV scale gravity models, Nucl. Phys. B 830 (2010) 248 [arXiv:0909.2651] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Z. Usubov and I. Minashvili, Impact of space-time extra dimensions on μ + μ and W + W angular distributions in e + e collisions, Phys. Part. Nucl. Lett. 3 (2006) 153 [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    K.Y. Lee, H. Song and J.-H. Song, Polarization effects on the e + e W + W process with large extra dimensions, Phys. Lett. B 464 (1999) 82 [hep-ph/9904355] [INSPIRE].ADSGoogle Scholar
  27. [27]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, W + W production in Large extra dimension model at next-to-leading order in QCD at the LHC, Phys. Rev. D 82 (2010) 036001 [arXiv:1003.5450] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y.-M. Bai, L. Guo, X.-Z. Li, W.-G. Ma and R.-Y. Zhang, Revisiting the large extra dimension effects on W -pair production at the LHC in next-to-leading order QCD, Phys. Rev. D 85 (2012) 016008 [arXiv:1112.4894] [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Mathews, S. Raychaudhuri and K. Sridhar, Getting to the top with extra dimensions, Phys. Lett. B 450 (1999) 343 [hep-ph/9811501] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    P. Mathews, S. Raychaudhuri and K. Sridhar, Testing TeV scale quantum gravity using dijet production at the Tevatron, JHEP 07 (2000) 008 [hep-ph/9904232] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K.Y. Lee, H. Song, J.-H. Song and C. Yu, Large extra dimension effects on the spin configuration of the top quark pair at e + e colliders, Phys. Rev. D 60 (1999) 093002 [hep-ph/9905227] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K.Y. Lee, S.C. Park, H. Song, J.-H. Song and C. Yu, Spin configuration of top quark pair production with large extra dimensions at photon-photon colliders, Phys. Rev. D 61 (2000) 074005 [hep-ph/9910466] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K.Y. Lee, J.-H. Song, S.C. Park, H. Song and C. Yu, Probing large extra dimensions with spin configuration of top quark pair production at the JLC, hep-ph/0105326 [INSPIRE].
  34. [34]
    S. Inan and A. Billur, Polarized top pair production in extra dimension models via photon-photon fusion at the CERN LHC, Phys. Rev. D 84 (2011) 095002 [INSPIRE].ADSGoogle Scholar
  35. [35]
    H. Sun, Y.-J. Zhou and H. Chen, Constraints on large-extra-dimensions model through 125-GeV Higgs pair production at the LHC, Eur. Phys. J. C 72 (2012) 2011 [INSPIRE].ADSGoogle Scholar
  36. [36]
    CMS collaboration, S. Chatrchyan et al., Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    CMS collaboration, S. Chatrchyan et al., Search for large extra dimensions in dimuon and dielectron events in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 711 (2012) 15 [arXiv:1202.3827] [INSPIRE].ADSGoogle Scholar
  38. [38]
    CMS collaboration, S. Chatrchyan et al., Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider, arXiv:1112.0688 [INSPIRE].
  39. [39]
    R. Franceschini, P.P. Giardino, G.F. Giudice, P. Lodone and A. Strumia, LHC bounds on large extra dimensions, JHEP 05 (2011) 092 [arXiv:1101.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb −1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (2011).
  41. [41]
    CMS collaboration, Combination of SM Higgs Searches, CMS-PAS-HIG-11-032 (2011).
  42. [42]
    Y.-M. Bai, L. Guo, X.-Z. Li, W.-G. Ma and R.-Y. Zhang, Revisiting the large extra dimension effects on W -pair production at the LHC in next-to-leading order QCD, Phys. Rev. D 85 (2012) 016008 [arXiv:1112.4894] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Guzzi et al., CT10 parton distributions and other developments in the global QCD analysis, SMU-HEP-10-11 (2011).
  44. [44]
    S. Kawabata, A New version of the multidimensional integration and event generation package BASES/SPRING, Comput. Phys. Commun. 88 (1995) 309 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  45. [45]
    A. van Hameren, Kaleu: A General-Purpose Parton-Level Phase Space Generator, arXiv:1003.4953 [INSPIRE].
  46. [46]
    B. Harris and J. Owens, The Two cutoff phase space slicing method, Phys. Rev. D 65 (2002) 094032 [hep-ph/0102128] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  48. [48]
    T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 89 (2000) 231 [hep-ph/0005029] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  52. [52]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  53. [53]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.School of Physics and TechnologyUniversity of JinanJinanP.R. China
  2. 2.School of PhysicsShandong UniversityJinanP.R. China

Personalised recommendations