Journal of High Energy Physics

, 2012:125 | Cite as

Dark radiation and dark matter in large volume compactifications

Article

Abstract

We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced by the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.

Keywords

Supersymmetry Phenomenology Strings and branes phenomenology 

References

  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    K. Choi and K.S. Jeong, String theoretic QCD axion with stabilized saxion and the pattern of supersymmetry breaking, JHEP 01 (2007) 103 [hep-th/0611279] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    B.S. Acharya, K. Bobkov and P. Kumar, An M-theory Solution to the Strong CP Problem and Constraints on the Axiverse, JHEP 11 (2010) 105 [arXiv:1004.5138] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Higaki and T. Kobayashi, Note on moduli stabilization, supersymmetry breaking and axiverse, Phys. Rev. D 84 (2011) 045021 [arXiv:1106.1293] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Cicoli, M. Goodsell, A. Ringwald, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.R. Ellis, D.V. Nanopoulos and M. Quirós, On the Axion, Dilaton, Polonyi, Gravitino and Shadow Matter Problems in Supergravity and Superstring Models, Phys. Lett. B 174 (1986) 176 [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Goncharov, A.D. Linde and M. Vysotsky, Cosmological problems for spontaneously broken supergravity, Phys. Lett. B 147 (1984) 279 [INSPIRE].ADSGoogle Scholar
  16. [16]
    B. de Carlos, J. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4 − D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].ADSGoogle Scholar
  17. [17]
    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  18. [18]
    CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Endo, K. Hamaguchi and F. Takahashi, Moduli-induced gravitino problem, Phys. Rev. Lett. 96 (2006) 211301 [hep-ph/0602061] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Nakamura and M. Yamaguchi, Gravitino production from heavy moduli decay and cosmological moduli problem revived, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Dine, R. Kitano, A. Morisse and Y. Shirman, Moduli decays and gravitinos, Phys. Rev. D 73 (2006) 123518 [hep-ph/0604140] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    M. Endo, K. Hamaguchi and F. Takahashi, Moduli/Inflaton Mixing with Supersymmetry Breaking Field, Phys. Rev. D 74 (2006) 023531 [hep-ph/0605091] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Higaki, K. Kamada and F. Takahashi, Higgs, Moduli Problem, Baryogenesis and Large Volume Compactifications, JHEP 09 (2012) 043 [arXiv:1207.2771] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Dunkley et al., The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra, Astrophys. J. 739 (2011) 52 [arXiv:1009.0866] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Keisler et al., A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope, Astrophys. J. 743 (2011) 28 [arXiv:1105.3182] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, arXiv:1104.2333 [INSPIRE].
  29. [29]
    A.X. Gonzalez-Morales, R. Poltis, B.D. Sherwin and L. Verde, Are priors responsible for cosmology favoring additional neutrino species?, arXiv:1106.5052 [INSPIRE].
  30. [30]
    J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: How disfavoured exactly?, JCAP 09 (2011) 034 [arXiv:1108.4136] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Archidiacono, E. Calabrese and A. Melchiorri, The Case for Dark Radiation, Phys. Rev. D 84 (2011) 123008 [arXiv:1109.2767] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Hamann, Evidence for extra radiation? Profile likelihood versus Bayesian posterior, JCAP 03 (2012) 021 [arXiv:1110.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.A. Olive and E.D. Skillman, A Realistic determination of the error on the primordial helium abundance: Steps toward non-parametric nebular helium abundances, Astrophys. J. 617 (2004) 29 [astro-ph/0405588] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Izotov and T. Thuan, The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis, Astrophys. J. 710 (2010) L67 [arXiv:1001.4440] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K.M. Nollett and G.P. Holder, An analysis of constraints on relativistic species from primordial nucleosynthesis and the cosmic microwave background, arXiv:1112.2683 [INSPIRE].
  37. [37]
    R. Blumenhagen, J. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, Increasing effective number of neutrinos by decaying particles, JCAP 05 (2007) 008 [hep-ph/0703034] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Jaeckel, J. Redondo and A. Ringwald, Signatures of a hidden cosmic microwave background, Phys. Rev. Lett. 101 (2008) 131801 [arXiv:0804.4157] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Nakayama, F. Takahashi and T.T. Yanagida, A theory of extra radiation in the Universe, Phys. Lett. B 697 (2011) 275 [arXiv:1010.5693] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Kobayashi, F. Takahashi, T. Takahashi and M. Yamaguchi, Dark Radiation from Modulated Reheating, JCAP 03 (2012) 036 [arXiv:1111.1336] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Hasenkamp, Dark radiation from the axino solution of the gravitino problem, Phys. Lett. B 707 (2012) 121 [arXiv:1107.4319] [INSPIRE].ADSGoogle Scholar
  43. [43]
    K.S. Jeong and F. Takahashi, Light Higgsino from Axion Dark Radiation, JHEP 08 (2012) 017 [arXiv:1201.4816] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Choi, K.-Y. Choi and C.S. Shin, Dark radiation and small-scale structure problems with decaying particles, Phys. Rev. D 86 (2012) 083529 [arXiv:1208.2496] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Graf and F.D. Steffen, Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures, arXiv:1208.2951 [INSPIRE].
  46. [46]
    G. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Endo, M. Kawasaki, F. Takahashi and T. Yanagida, Inflaton decay through supergravity effects, Phys. Lett. B 642 (2006) 518 [hep-ph/0607170] [INSPIRE].ADSGoogle Scholar
  48. [48]
    L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    V. Kaplunovsky and J. Louis, On Gauge couplings in string theory, Nucl. Phys. B 444 (1995) 191 [hep-th/9502077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    M. Endo, K. Kadota, K.A. Olive, F. Takahashi and T. Yanagida, The Decay of the Inflaton in No-scale Supergravity, JCAP 02 (2007) 018 [hep-ph/0612263] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    M. Endo, F. Takahashi and T. Yanagida, Anomaly-induced inflaton decay and gravitino-overproduction problem, Phys. Lett. B 658 (2008) 236 [hep-ph/0701042] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Endo, F. Takahashi and T. Yanagida, Inflaton Decay in Supergravity, Phys. Rev. D 76 (2007) 083509 [arXiv:0706.0986] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    M. Endo, F. Takahashi and T. Yanagida, Inflaton Decay in Supergravity, Phys. Rev. D 76 (2007) 083509 [arXiv:0706.0986] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. Aldazabal, L.E. Ibáñez, F. Quevedo and A. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Cascales, M. Garcia del Moral, F. Quevedo and A. Uranga, Realistic D-brane models on warped throats: Fluxes, hierarchies and moduli stabilization, JHEP 02 (2004) 031 [hep-th/0312051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    J.P. Conlon, A. Maharana and F. Quevedo, Towards Realistic String Vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    S. Krippendorf, M.J. Dolan, A. Maharana and F. Quevedo, D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics, JHEP 06 (2010) 092 [arXiv:1002.1790] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    M.J. Dolan, S. Krippendorf and F. Quevedo, Towards a Systematic Construction of Realistic D-brane Models on a del Pezzo Singularity, JHEP 10 (2011) 024 [arXiv:1106.6039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo Singularities: Global Embedding and Moduli Stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    L.E. Ibáñez, R. Rabadán and A. Uranga, Anomalous U(1)s in type-I and type IIB D = 4, N =1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    J.P. Conlon and F. Quevedo, On the explicit construction and statistics of Calabi-Yau flux vacua, JHEP 10 (2004) 039 [hep-th/0409215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J.P. Conlon and E. Palti, On Gauge Threshold Corrections for Local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [INSPIRE].ADSGoogle Scholar
  69. [69]
    J.P. Conlon, Gauge Threshold Corrections for Local String Models, JHEP 04 (2009) 059 [arXiv:0901.4350] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    J.P. Conlon, M. Goodsell and E. Palti, One-loop Yukawa Couplings in Local Models, JHEP 11 (2010) 087 [arXiv:1007.5145] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    J.P. Conlon and F.G. Pedro, Moduli Redefinitions and Moduli Stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    K. Choi, H.P. Nilles, C.S. Shin and M. Trapletti, Sparticle Spectrum of Large Volume Compactification, JHEP 02 (2011) 047 [arXiv:1011.0999] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, de Sitter String Vacua from Dilaton-dependent Non-perturbative Effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Saltman and E. Silverstein, The Scaling of the no scale potential and de Sitter model building, JHEP 11 (2004) 066 [hep-th/0402135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    O. Lebedev, H.P. Nilles and M. Ratz, de Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].MathSciNetADSGoogle Scholar
  79. [79]
    E. Dudas, C. Papineau and S. Pokorski, Moduli stabilization and uplifting with dynamically generated F-terms, JHEP 02 (2007) 028 [hep-th/0610297] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Moduli stabilization, F-term uplifting and soft supersymmetry breaking terms, Phys. Rev. D 75 (2007) 025019 [hep-th/0611024] [INSPIRE].ADSGoogle Scholar
  81. [81]
    R. Kallosh and A.D. Linde, OKKLT, JHEP 02 (2007) 002 [hep-th/0611183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    H. Abe, T. Higaki and T. Kobayashi, More about F-term uplifting, Phys. Rev. D 76 (2007) 105003 [arXiv:0707.2671] [INSPIRE].ADSGoogle Scholar
  83. [83]
    C. Burgess, R. Kallosh and F. Quevedo, de Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].MathSciNetADSGoogle Scholar
  84. [84]
    A. Achucarro, B. de Carlos, J. Casas and L. Doplicher, de Sitter vacua from uplifting D-terms in effective supergravities from realistic strings, JHEP 06 (2006) 014 [hep-th/0601190] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M. Cicoli and A. Mazumdar, Reheating for Closed String Inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J.P. Conlon and L.T. Witkowski, Scattering and Sequestering of Blow-Up Moduli in Local String Models, JHEP 12 (2011) 028 [arXiv:1109.4153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  87. [87]
    A. Hebecker, A.K. Knochel and T. Weigand, A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    T. Higaki, N. Kitazawa, T. Kobayashi and K.-j. Takahashi, Flavor structure and coupling selection rule from intersecting D-branes, Phys. Rev. D 72 (2005) 086003 [hep-th/0504019] [INSPIRE].MathSciNetADSGoogle Scholar
  89. [89]
    R.S. Gupta and J.D. Wells, Next Generation Higgs Bosons: Theory, Constraints and Discovery Prospects at the Large Hadron Collider, Phys. Rev. D 81 (2010) 055012 [arXiv:0912.0267] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].ADSGoogle Scholar
  91. [91]
    C.S. Shin, Anomalous U(1) Mediation in Large Volume Compactification, JHEP 01 (2012) 084 [arXiv:1108.5740] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  93. [93]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    H. Murayama, H. Suzuki and T. Yanagida, Radiative breaking of Peccei-Quinn symmetry at the intermediate mass scale, Phys. Lett. B 291 (1992) 418 [INSPIRE].ADSGoogle Scholar
  95. [95]
    K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [INSPIRE].MathSciNetADSGoogle Scholar
  96. [96]
    M. Kawasaki, T. Moroi and T. Yanagida, Can decaying particles raise the upper bound on the Peccei-Quinn scale?, Phys. Lett. B 383 (1996) 313 [hep-ph/9510461] [INSPIRE].ADSGoogle Scholar
  97. [97]
    K. Nakayama and F. Takahashi, PeV-scale Supersymmetry from New Inflation, JCAP 05 (2012) 035 [arXiv:1203.0323] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    K. Nakayama and F. Takahashi, Low-scale Supersymmetry from Inflation, JCAP 10 (2011) 033 [arXiv:1108.0070] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    K. Nakayama and F. Takahashi, Higgs mass and inflation, Phys. Lett. B 707 (2012) 142 [arXiv:1108.3762] [INSPIRE].ADSGoogle Scholar
  100. [100]
    I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  101. [101]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  102. [102]
    M. Cicoli, J.P. Conlon and F. Quevedo, Dark Radiation in LARGE Volume Models, arXiv:1208.3562 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Mathematical Physics Lab., RIKEN Nishina CenterSaitamaJapan
  2. 2.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations