Journal of High Energy Physics

, 2012:124 | Cite as

New physics from the top at the LHC

  • Chien-Yi Chen
  • Ayres Freitas
  • Tao Han
  • Keith S. M. Lee


The top quark may hold the key to new physics associated with the electroweak symmetry-breaking sector, given its large mass and enhanced coupling to the Higgs sector. We systematically categorize generic interactions of a new particle that couples to the top quark and a neutral particle, which is assumed to be heavy and stable, thus serving as a candidate for cold dark matter. The experimental signatures for new physics involving top quarks and its partners at the Large Hadron Collider (LHC) may be distinctive, yet challenging to disentangle. We optimize the search strategy at the LHC for the decay of the new particle to a top quark plus missing energy and propose the study of its properties, such as its spin and couplings. We find that, at 14 TeV with an integrated luminosity of 100 fb−1, a spin-zero top partner can be observed at the 5σ level for a mass of 675 GeV. A spin-zero particle can be differentiated from spin-1/2 and spin-1 particles at the 5σ level with a luminosity of 10 fb−1.


Supersymmetry Phenomenology Phenomenology of Field Theories in Higher Dimensions 


  1. [1]
    J. Incandela and F. Gianotti, Latest update in the search for the Higgs boson, talks at CERN LHC seminar, July 4 (2012),
  2. [2]
    G.F. Giudice, Naturally Speaking: The Naturalness Criterion and Physics at the LHC, arXiv:0801.2562 [INSPIRE].
  3. [3]
    P. Meade and M. Reece, Top partners at the LHC: Spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Han, R. Mahbubani, D.G. Walker and L.-T. Wang, Top Quark Pair plus Large Missing Energy at the LHC, JHEP 05 (2009) 117 [arXiv:0803.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Plehn, M. Spannowsky and M. Takeuchi, Boosted Semileptonic Tops in Stop Decays, JHEP 05 (2011) 135 [arXiv:1102.0557] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the Top Background of the Stop Search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D.S. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and MET: The Shape of Things to Come, arXiv:1205.5805 [INSPIRE].
  9. [9]
    Z. Han, A. Katz, D. Krohn and M. Reece, (Light) Stop Signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.E. Kaplan, K. Rehermann and D. Stolarski, Searching for Direct Stop Production in Hadronic Top Data at the LHC, JHEP 07 (2012) 119 [arXiv:1205.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Plehn, M. Spannowsky and M. Takeuchi, Stop searches in 2012, JHEP 08 (2012) 091 [arXiv:1205.2696] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Cao, C. Han, L. Wu, J.M. Yang and Y. Zhang, Probing Natural SUSY from Stop Pair Production at the LHC, arXiv:1206.3865 [INSPIRE].
  13. [13]
    B. Dutta, T. Kamon, N. Kolev, K. Sinha and K. Wang, Searching for Top Squarks at the LHC in Fully Hadronic Final State, Phys. Rev. D 86 (2012) 075004 [arXiv:1207.1873] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  15. [15]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].ADSGoogle Scholar
  16. [16]
    B.A. Dobrescu and E. Pontón, Chiral compactification on a square, JHEP 03 (2004) 071 [hep-th/0401032] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Burdman, B.A. Dobrescu and E. Ponton, Six-dimensional gauge theory on the chiral square, JHEP 02 (2006) 033 [hep-ph/0506334] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H. Cai, H.-C. Cheng and J. Terning, A Spin-1 Top Quark Superpartner, Phys. Rev. Lett. 101 (2008) 171805 [arXiv:0806.0386] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].ADSGoogle Scholar
  22. [22]
    CDF collaboration, T. Aaltonen et al., Search for Production of Heavy Particles Decaying to Top Quarks and Invisible Particles in \(p\overline{p}\) collisions at \(\sqrt{s}=1.96\;TeV\), Phys. Rev. Lett. 106 (2011) 191801 [arXiv:1103.2482] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D0 collaboration, V.M. Abazov et al., Search for scalar bottom quarks and third-generation leptoquarks in pp bar collisions at \(\sqrt{s}=1.96\;TeV\), Phys. Lett. B 693 (2010) 95 [arXiv:1005.2222] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.S. Carena, J. Hubisz, M. Perelstein and P. Verdier, Collider signature of T-quarks, Phys. Rev. D 75 (2007) 091701 [hep-ph/0610156] [INSPIRE].ADSGoogle Scholar
  25. [25]
    ATLAS collaboration, G. Aad et al., Search for New Phenomena in \(t\overline{t}\) Events With Large Missing Transverse Momentum in Proton-Proton Collisions at \(\sqrt{s}=7\;TeV\) with the ATLAS Detector, Phys. Rev. Lett. 108 (2012) 041805 [arXiv:1109.4725] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    ATLAS collaboration, Search for a heavy top partner in final states with two leptons with the ATLAS detector, ATLAS-CONF-2012-071 (2012).
  27. [27]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \(\sqrt{s}=7\;TeV\) pp collisions using 4.7 ifb of ATLAS data, ATLAS-CONF-2012-073 (2012).
  28. [28]
    ATLAS collaboration, Search for a supersymmetric partner of the top quark in final states with jets and missing transverse momentum at \(\sqrt{s}=7\;TeV\) with the ATLAS detector, ATLAS-CONF-2012-074 (2012).
  29. [29]
    S. Sharma, Searches for SUSY in hadronic final states at CMS, talk at the 36th International Conference for High Energy Physics (ICHEP 2012), Melbourne, Australia, 4–11 July 2012.Google Scholar
  30. [30]
    C. Rogan, Interpretations of CMS SUSY analyses in the simplified model space (SMS), talk at the 36th International Conference for High Energy Physics (ICHEP 2012), Melbourne, Australia, 4–11 July 2012.Google Scholar
  31. [31]
    R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy Flavor Simplified Models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y. Kats, P. Meade, M. Reece and D. Shih, The Status of GMSB After 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    X.-J. Bi, Q.-S. Yan and P.-F. Yin, Probing Light Stop Pairs at the LHC, Phys. Rev. D 85 (2012) 035005 [arXiv:1111.2250] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the Third Generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Choudhury and A. Datta, New limits on top squark NLSP from LHC 4.7 f b −1 data, Mod. Phys. Lett. A 27 (2012) 1250188 [arXiv:1207.1846] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections to \(t\overline{t}Z\) production at the LHC, Phys. Lett. B 666 (2008) 62 [arXiv:0804.2220] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Kardos, Z. Trócsányi and C. Papadopoulos, Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev. D 85 (2012) 054015 [arXiv:1111.0610] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Garzelli, A. Kardos, C. Papadopoulos and Z. Trócsányi, Z0 - boson production in association with a top anti-top pair at NLO accuracy with parton shower effects, Phys. Rev. D 85 (2012) 074022 [arXiv:1111.1444] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ATLAS collaboration, G. Aad et al., Measurement of the top quark pair cross section with ATLAS in pp collisions at \(\sqrt{s}=7\;TeV\) using final states with an electron or a muon and a hadronically decaying τ lepton, Phys. Lett. B 717 (2012) 89 [arXiv:1205.2067] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].
  44. [44]
    A. Pukhov, A. Belyaev and N. Christensen, CalcHEP - a package for calculation of Feynman diagrams and integration over multi-particle phase space,
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. Lester and D. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A.J. Barr and C.G. Lester, A Review of the Mass Measurement Techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Barr et al., Guide to transverse projections and mass-constraining variables, Phys. Rev. D 84 (2011) 095031 [arXiv:1105.2977] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Alwall, A. Freitas and O. Mattelaer, Measuring Sparticles with the Matrix Element, AIP Conf. Proc. 1200 (2010) 442 [arXiv:0910.2522] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner Mass Measurement Technique using 1D Orthogonal Decompositions of the Cambridge Transverse Mass Variable M T2, Phys. Rev. Lett. 105 (2010) 051802 [arXiv:0910.3679] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Cohen, E. Kuflik and K.M. Zurek, Extracting the Dark Matter Mass from Single Stage Cascade Decays at the LHC, JHEP 11 (2010) 008 [arXiv:1003.2204] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Han, I.-W. Kim and J. Song, Kinematic Cusps: Determining the Missing Particle Mass at Colliders, Phys. Lett. B 693 (2010) 575 [arXiv:0906.5009] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Han, I.-W. Kim and J. Song, Kinematic Cusps With Two Missing Particles I: Antler Decay Topology, arXiv:1206.5633 [INSPIRE].
  54. [54]
    T. Han, I.-W. Kim and J. Song, Kinematic Cusps with Two Missing Particles II: Cascade Decay Topology, arXiv:1206.5641 [INSPIRE].
  55. [55]
    G.L. Kane, A.A. Petrov, J. Shao and L.-T. Wang, Initial determination of the spins of the gluino and squarks at LHC, J. Phys. G 37 (2010) 045004 [arXiv:0805.1397] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Barr, Measuring slepton spin at the LHC, JHEP 02 (2006) 042 [hep-ph/0511115] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C.-Y. Chen and A. Freitas, General analysis of signals with two leptons and missing energy at the Large Hadron Collider, JHEP 02 (2011) 002 [arXiv:1011.5276] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Chien-Yi Chen
    • 1
  • Ayres Freitas
    • 2
  • Tao Han
    • 2
  • Keith S. M. Lee
    • 2
  1. 1.Department of PhysicsCarnegie Mellon UniversityPittsburghU.S.A.
  2. 2.PITTsburgh Particle physics, Astrophysics, and Cosmology Center (PITT PACC), Department of Physics & AstronomyUniversity of PittsburghPittsburghU.S.A.

Personalised recommendations