Journal of High Energy Physics

, 2012:123 | Cite as

Thermal Giant Gravitons

  • Jay Armas
  • Troels Harmark
  • Niels A. Obers
  • Marta Orselli
  • Andreas Vigand Pedersen


We study the giant graviton solution as the AdS5 × S 5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S 3 moving on the S 5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S 3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of motion, action and conserved charges for the thermal giant graviton we present a slight generalization of the blackfold formalism for charged black branes. Finally, we also briefly consider the thermal giant graviton moving in the AdS5 part.


D-branes AdS-CFT Correspondence Black Holes in String Theory 


  1. [1]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfold approach for higher-dimensional black holes, Acta Phys. Polon. B 40 (2009) 3459 [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    R. Emparan, “Blackfolds,” arXiv:1106.2021 [hep-th] R. Emparan, Blackfolds, arXiv:1106.2021 [INSPIRE].
  6. [6]
    J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP 03 (2012) 038 [Erratum ibid. 1206 (2012) 155] [arXiv:1201.3506] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermodynamics of the hot BIon, Nucl. Phys. B 851 (2011) 462 [arXiv:1101.1297] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermal string probes in AdS and finite temperature Wilson loops, JHEP 06 (2012) 144 [arXiv:1201.4862] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Niarchos and K. Siampos, M2-M5 blackfold funnels, JHEP 06 (2012) 175 [arXiv:1205.1535] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Niarchos and K. Siampos, Entropy of the self-dual string soliton, JHEP 07 (2012) 134 [arXiv:1206.2935] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (anti)-de Sitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J. Armas and N.A. Obers, Blackfolds in (anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory,Adv. Theor. Math. Phys. 5 (2002) 809[hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  21. [21]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M.M. Caldarelli and P.J. Silva, Multi-giant graviton systems, SUSY breaking and CFT, JHEP 02 (2004) 052 [hep-th/0401213] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    D. Bak, B. Chen and J.-B. Wu, Holographic correlation functions for open strings and branes, JHEP 06 (2011) 014 [arXiv:1103.2024] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Armas, J. Camps, T. Harmark and N.A. Obers, The young modulus of black strings and the fine structure of blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Carter, Essentials of classical brane dynamics, Int. J. Theor. Phys. 40 (2001) 2099 [gr-qc/0012036] [INSPIRE].MATHCrossRefGoogle Scholar
  28. [28]
    J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    G. Arcioni and E. Lozano-Tellechea, Stability and critical phenomena of black holes and black rings, Phys. Rev. D 72 (2005) 104021 [hep-th/0412118] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    J.T. Liu, H. Lü, C. Pope and J.F. Vazquez-Poritz, Bubbling AdS black holes, JHEP 10 (2007) 030 [hep-th/0703184] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Buchel, Coarse-graining 1/2 BPS geometries of type IIB supergravity, Int. J. Mod. Phys. A 21 (2006) 3495 [hep-th/0409271] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Giombi, M. Kulaxizi, R. Ricci and D. Trancanelli, Half-BPS geometries and thermodynamics of free fermions, JHEP 01 (2007) 067 [hep-th/0512101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027 [hep-th/0010206] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Jay Armas
    • 1
  • Troels Harmark
    • 2
  • Niels A. Obers
    • 1
  • Marta Orselli
    • 1
  • Andreas Vigand Pedersen
    • 1
  1. 1.The Niels Bohr InstituteCopenhagen UniversityCopenhagen ØDenmark
  2. 2.NORDITAStockholmSweden

Personalised recommendations