Journal of High Energy Physics

, 2012:120

Relating harmonic and projective descriptions of \( \mathcal{N}=2 \) nonlinear sigma models

Article

Abstract

Recent papers have established the relationship between projective superspace and a complexified version of harmonic superspace. We extend this construction to the case of general nonlinear sigma models in both frameworks. Using an analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian structure of the harmonic action and the symplectic structure of the projective action naturally arise from a single unifying action on a complexified version of harmonic superspace. This links the harmonic and projective descriptions of hyperkähler target spaces. For the two examples of Taub-NUT and Eguchi-Hanson, we show how to derive the projective superspace solutions from the harmonic superspace solutions.

Keywords

Extended Supersymmetry Superspaces Sigma Models 

References

  1. [1]
    B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B 87 (1979) 203 [INSPIRE].ADSGoogle Scholar
  2. [2]
    L. Álvarez-Gaumé and D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model, Commun. Math. Phys. 80 (1981) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Álvarez-Gaumé and D.Z. Freedman, Potentials for the supersymmetric nonlinear σ-model, Commun. Math. Phys. 91 (1983) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.L. Curtright and D.Z. Freedman, Nonlinear σ-models with extended supersymmetry in four-dimensions, Phys. Lett. B 90 (1980) 71 [Erratum ibid. B 91 (1980) 487] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge U.K. (2001),MATHCrossRefGoogle Scholar
  7. [7]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSGoogle Scholar
  8. [8]
    U. Lindström and M. Roček, New hyperKähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  9. [9]
    U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  10. [10]
    S.M. Kuzenko, Projective superspace as a double punctured harmonic superspace, Int. J. Mod. Phys. A 14 (1999) 1737 [hep-th/9806147] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    D. Jain and W. Siegel, Deriving projective hyperspace from harmonic, Phys. Rev. D 80 (2009) 045024 [arXiv:0903.3588] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    D. Jain and W. Siegel, On projective hoops: loops in hyperspace, Phys. Rev. D 83 (2011) 105024 [arXiv:1012.3758] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Jain and W. Siegel, N = 2 super-Yang-Mills theory from a Chern-Simons action, arXiv:1203.2929 [INSPIRE].
  14. [14]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, HyperKähler metrics and harmonic superspace, Commun. Math. Phys. 103 (1986) 515 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Gauge field geometry from complex and harmonic analyticities. HyperKähler case, Annals Phys. 185 (1988) 22 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    A. Galperin, E. Ivanov and V. Ogievetsky, Duality transformations and most general matter selfcoupling in N = 2 supersymmetry, Nucl. Phys. B 282 (1987) 74 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Galperin and V. Ogievetsky, N = 2 D = 4 supersymmetric σ-models and hamiltonian mechanics, Class. Quant. Grav. 8 (1991) 1757 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    A. Roslyi and A.S. Schwarz, Supersymmetry in a space with auxiliary dimensions, Commun. Math. Phys. 105 (1986) 645 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A.A. Rosly, Super Yang-Mills constraints as integrability conditions, in the Proceedings of the International Seminar on Group Theoretical Methods in Physics, Zvenigorod USSR, 1982, M.A. Markov ed., Moscow USSR (1983) 263.Google Scholar
  20. [20]
    S.M. Kuzenko, Lectures on nonlinear σ-models in projective superspace, J. Phys. A 43 (2010) 443001 [arXiv:1004.0880] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström and R. von Unge, Feynman rules in N =2 projective superspace: 1. Massless hypermultiplets,Nucl. Phys. B 516 (1998) 426 [hep-th/9710250] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.J. Gates Jr. and S.M. Kuzenko, The CNM hypermultiplet nexus, Nucl. Phys. B 543 (1999) 122 [hep-th/9810137] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S.J. Gates Jr. and S.M. Kuzenko, 4D N = 2 supersymmetric off-shell σ-models on the cotangent bundles of Kähler manifolds, Fortsch. Phys. 48 (2000) 115 [hep-th/9903013] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    U. Lindström and M. Roček, Properties of hyperkähler manifolds and their twistor spaces, Commun. Math. Phys. 293 (2010) 257 [arXiv:0807.1366].ADSMATHCrossRefGoogle Scholar
  25. [25]
    S.M. Kuzenko, On compactified harmonic/projective superspace, 5D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    S.M. Kuzenko, On superconformal projective hypermultiplets, JHEP 12 (2007) 010 [arXiv:0710.1479] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M. Arai and M. Nitta, Hyper-Kähler σ-models on (co)tangent bundles with SO(n) isometry, Nucl. Phys. B 745 (2006) 208 [hep-th/0602277] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M. Arai, S.M. Kuzenko and U. Lindström, HyperKähler σ-models on cotangent bundles of Hermitian symmetric spaces using projective superspace, JHEP 02 (2007) 100 [hep-th/0612174] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Arai, S.M. Kuzenko and U. Lindström, Polar supermultiplets, Hermitian symmetric spaces and hyperKähler metrics, JHEP 12 (2007) 008 [arXiv:0709.2633] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.M. Kuzenko and J. Novak, Chiral formulation for hyperKähler σ-models on cotangent bundles of symmetric spaces, JHEP 12 (2008) 072 [arXiv:0811.0218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S.M. Kuzenko, N = 2 supersymmetric σ-models and duality, JHEP 01 (2010) 115 [arXiv:0910.5771] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S.M. Kuzenko, Comments on N = 2 supersymmetric σ-models in projective superspace, J. Phys. A 45 (2012) 095401 [arXiv:1110.4298] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  34. [34]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Conformal invariance in harmonic superspace, in Quantum field theory and quantum statistics, vol. 2, I.A. Batalin et al. eds. (1985) 233.Google Scholar
  35. [35]
    A. Galperin, E. Ivanov and O. Ogievetsky, Harmonic space and quaternionic manifolds, Annals Phys. 230 (1994) 201 [hep-th/9212155] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  36. [36]
    A. Galperin, E. Ivanov and V. Ogievetsky, Superspace actions and duality transformations for N = 2 tensor multiplets, Sov. J. Nucl. Phys. 45 (1987) 157 [INSPIRE].Google Scholar
  37. [37]
    G. Gibbons, D. Olivier, P. Ruback and G. Valent, Multicenter metrics and harmonic superspace, Nucl. Phys. B 296 (1988) 679 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Galperin, E. Ivanov, V. Ogievetsky and P. Townsend, Eguchi-Hanson type metrics from harmonic superspace, Class. Quant. Grav. 3 (1986) 625 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  39. [39]
    L. Álvarez-Gaumé and D.Z. Freedman, Ricci flat Kähler manifolds and supersymmetry, Phys. Lett. B 94 (1980) 171 [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Roček and P. Townsend, Three loop finiteness of the N = 4 supersymmetric nonlinear σ-model, Phys. Lett. B 96 (1980) 72 [INSPIRE].ADSGoogle Scholar
  41. [41]
    U. Lindström and M. Roček, Scalar tensor duality and N = 1, N = 2 nonlinear σ-models, Nucl. Phys. B 222 (1983) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Feix, Hyperkähler metrics on cotangent bundles, Ph.D. Thesis, Cambridge University, Cambridge U.K. (1999).Google Scholar
  43. [43]
    B. Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001) 33.MathSciNetMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.School of Physics M013, The University of Western AustraliaCrawleyAustralia

Personalised recommendations