Journal of High Energy Physics

, 2012:116 | Cite as

Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger

Article

Abstract

We consider the issue of vacuum stability and triviality bound of the singlet extension of the Standard Model (SM) with a singlet fermion dark matter (DM). In this model, the singlet scalar plays the role of a messenger between the SM sector and the dark matter sector. This model has two Higgs-like scalar bosons, and is consistent with all the data on electroweak precision tests, thermal relic density of DM and its direct detection constraints. We show that this model is stable without hitting Landau pole up to Planck scale for 125 GeV Higgs boson. We also perform a comprehensive study of vacuum structure, and point out that a region where electroweak vacuum is the global minimum is highly limited. In this model, both Higgs-like scalar bosons have reduced couplings to the SM weak gauge bosons and the SM fermions, because of the mixing between the SM Higgs boson and the singlet scalar. There is also a possibility of their invisible decay(s) into a pair of DM’s. Therefore this model would be disfavored if the future data on the (σ B)VV or \( {{\left( {\sigma \cdot B} \right)}_f}_{\bar{f}} \) with V = γ, W, Z and f = b, τ turn out larger than the SM predictions.

Keywords

Higgs Physics Beyond Standard Model Cosmology of Theories beyond the SM 

References

  1. [1]
    M. Gavela, P. Hernández, J. Orloff and O. Pene, Standard model CP-violation and baryon asymmetry, Mod. Phys. Lett. A 9 (1994) 795 [hep-ph/9312215] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: Finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Huet and E. Sather, Electroweak baryogenesis and standard model CP-violation, Phys. Rev. D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Konstandin, T. Prokopec and M.G. Schmidt, Axial currents from CKM matrix CP-violation and electroweak baryogenesis, Nucl. Phys. B 679 (2004) 246 [hep-ph/0309291] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors And Unified Theories, Conf. Proc. C 790927 (1979) 315 [INSPIRE].
  7. [7]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in proceedings of Workshop on Unified Theories and Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).Google Scholar
  8. [8]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  10. [10]
    W. Buchmüller and M. Plümacher, Neutrino masses and the baryon asymmetry, Int. J. Mod. Phys. A 15 (2000) 5047 [hep-ph/0007176] [INSPIRE].ADSGoogle Scholar
  11. [11]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  12. [12]
    W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.-C. Chen, TASI 2006 Lectures on Leptogenesis, hep-ph/0703087 [INSPIRE].
  14. [14]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].ADSGoogle Scholar
  17. [17]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Incandela, Stauts of the CMS SM Higgs search, talk given at the conference Latest update in the search for the Higgs boson, CERN, Geneva, 4 July 2012 [http://indico.cern.ch/conferenceDisplay.py?confId=197461].
  19. [19]
    F. Gianotti, Status of standard model Higgs searches at ATLAS, talk given at the conference Latest update in the search for the Higgs boson, CERN, Geneva, 4 July 2012 [http://indico.cern.ch/conferenceDisplay.py?confId=197461].
  20. [20]
    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  21. [21]
    CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  22. [22]
    I. Krive and A.D. Linde, On the Vacuum Stability Problem in Gauge Theories, Nucl. Phys. B 117 (1976) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G.W. Anderson, New cosmological constraints on the Higgs boson and top quark masses, Phys. Lett. B 243 (1990) 265 [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice and A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSGoogle Scholar
  28. [28]
    I. Masina, The Higgs boson and Top quark masses as tests of Electroweak Vacuum Stability, arXiv:1209.0393 [INSPIRE].
  29. [29]
    F. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSGoogle Scholar
  30. [30]
    I. Masina and A. Notari, Standard Model False Vacuum Inflation: Correlating the Tensor-to-Scalar Ratio to the Top Quark and Higgs Boson masses, Phys. Rev. Lett. 108 (2012) 191302 [arXiv:1112.5430] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I. Masina and A. Notari, The Higgs mass range from Standard Model false vacuum Inflation in scalar-tensor gravity, Phys. Rev. D 85 (2012) 123506 [arXiv:1112.2659] [INSPIRE].ADSGoogle Scholar
  32. [32]
    I. Masina and A. Notari, Inflation from the Higgs field false vacuum with hybrid potential, arXiv:1204.4155 [INSPIRE].
  33. [33]
    B.W. Lee, C. Quigg and H. Thacker, The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].ADSGoogle Scholar
  35. [35]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].ADSGoogle Scholar
  38. [38]
    N. Jarosik et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors and Basic Results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  42. [42]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs portal vector dark matter: revisited, work in preparation.Google Scholar
  43. [43]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    K. Funakubo, S. Tao and F. Toyoda, Phase transitions in the NMSSM, Prog. Theor. Phys. 114 (2005) 369 [hep-ph/0501052] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, The Higgs Boson Sector of the Next-to-MSSM with CP-violation, Phys. Rev. D 82 (2010) 075007 [arXiv:1006.1458] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  48. [48]
    R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].ADSGoogle Scholar
  49. [49]
    Tevatron Electroweak Working Group, CD, D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].
  50. [50]
    B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    O. Lebedev, On Stability of the Electroweak Vacuum and the Higgs Portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    B. Batell, D. McKeen and M. Pospelov, Singlet Neighbors of the Higgs Boson, JHEP 10 (2012) 104 [arXiv:1207.6252] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Seungwon Baek
    • 1
  • P. Ko
    • 1
  • Wan-Il Park
    • 1
  • Eibun Senaha
    • 1
  1. 1.School of Physics, KIASSeoulKorea

Personalised recommendations