Journal of High Energy Physics

, 2012:110 | Cite as

Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization

  • Sharmila Gunasekaran
  • David Kubizňák
  • Robert B. Mann


We investigate the critical behaviour of charged and rotating AdS black holes in d spacetime dimensions, including effects from non-linear electrodynamics via the Born-Infeld action, in an extended phase space in which the cosmological constant is interpreted as thermodynamic pressure. For Reissner-Nördstrom black holes we find that the analogy with the Van der Walls liquid-gas system holds in any dimension greater than three, and that the critical exponents coincide with those of the Van der Waals system. We find that neutral slowly rotating black holes in four space-time dimensions also have the same qualitative behaviour. However charged and rotating black holes in three spacetime dimensions do not exhibit critical phenomena. For Born-Infeld black holes we define a new thermodynamic quantity B conjugate to the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We demonstrate that this quantity is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.


AdS-CFT Correspondence Black Holes 


  1. [1]
    S. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    B.P. Dolan, Compressibility of rotating black holes, Phys. Rev. D 84 (2011) 127503 [arXiv:1109.0198] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Cvetič, G. Gibbons, D. Kubiznak and C. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].ADSGoogle Scholar
  10. [10]
    B.P. Dolan, Where is the PdV term in the fist law of black hole thermodynamics?, to appear in Open Questions in Cosmology, G.J. Olmo ed., InTech (2012) [arXiv:1209.1272] [INSPIRE].
  11. [11]
    C.S. Peca and J.P.S. Lemos, Thermodynamics of Reissner-Nordstrom anti-de Sitter black holes in the grand canonical ensemble, Phys. Rev. D 59 (1999) 124007 [gr-qc/9805004] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    C. Niu, Y. Tian and X.-N. Wu, Critical Phenomena and Thermodynamic Geometry of RN-AdS Black Holes, Phys. Rev. D 85 (2012) 024017 [arXiv:1104.3066] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    R.B. Mann and S.F. Ross, Cosmological production of charged black hole pairs, Phys. Rev. D 52 (1995) 2254 [gr-qc/9504015] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [17]
    S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. [19]
    C. Martinez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three space-time dimensions, Phys. Rev. D 61 (2000) 104013 [hep-th/9912259] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].ADSGoogle Scholar
  21. [21]
    G.W. Gibbons, Aspects of Born-Infeld theory and string/M theory, Rev. Mex. Fis. 49S1 (2003) 19 [hep-th/0106059] [INSPIRE].Google Scholar
  22. [22]
    S. Fernando and D. Krug, Charged black hole solutions in Einstein- Born-Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    T.K. Dey, Born-Infeld black holes in the presence of a cosmological constant, Phys. Lett. B 595 (2004) 484 [hep-th/0406169] [INSPIRE].ADSGoogle Scholar
  24. [24]
    R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    S. Fernando, Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble, Phys. Rev. D 74 (2006) 104032 [hep-th/0608040] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and phase transitions in the Born-Infeld-anti-de Sitter black holes, Phys. Rev. D 78 (2008) 084002 [arXiv:0805.0187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Rasheed, Nonlinear electrodynamics: Zeroth and first laws of black hole mechanics, hep-th/9702087 [INSPIRE].
  29. [29]
    N. Breton, Smarrs formula for black holes with non-linear electrodynamics, Gen. Rel. Grav. 37 (2005) 643 [gr-qc/0405116] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. [30]
    W. Yi-Huan, Energy and first law of thermodynamics for Born-Infeld AdS black hole, Chinese Phys. B19 (2010) 090404.Google Scholar
  31. [31]
    R. Banerjee, S. Ghosh and D. Roychowdhury, New type of phase transition in Reissner Nordstrom - AdS black hole and its thermodynamic geometry, Phys. Lett. B 696 (2011) 156 [arXiv:1008.2644] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Lala and D. Roychowdhury, Ehrenfests scheme and thermodynamic geometry in Born-Infeld AdS black holes, Phys. Rev. D 86 (2012) 084027 [arXiv:1111.5991] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Banerjee and D. Roychowdhury, Critical phenomena in Born-Infeld AdS black holes, Phys. Rev. D 85 (2012) 044040 [arXiv:1111.0147] [INSPIRE].ADSGoogle Scholar
  34. [34]
    R. Banerjee and D. Roychowdhury, Critical behavior of Born Infeld AdS black holes in higher dimensions, Phys. Rev. D 85 (2012) 104043 [arXiv:1203.0118] [INSPIRE].ADSGoogle Scholar
  35. [35]
    O. Mišković and R. Olea, Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant, Phys. Rev. D 77 (2008) 124048 [arXiv:0802.2081] [INSPIRE].ADSGoogle Scholar
  36. [36]
    H. Zhang and X.-Z. Li, Critical Exponents of Gravity with Quantum Perturbations, arXiv:1208.0106 [INSPIRE].
  37. [37]
    N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Westview Press, New York, U.S.A. (1992).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Sharmila Gunasekaran
    • 1
  • David Kubizňák
    • 2
  • Robert B. Mann
    • 1
  1. 1.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  2. 2.Perimeter InstituteWaterlooCanada

Personalised recommendations