Advertisement

Journal of High Energy Physics

, 2012:105 | Cite as

Constrained SUSY seesaws with a 125 GeV Higgs

  • M. Hirsch
  • F. R. JoaquimEmail author
  • A. Vicente
Open Access
Article

Abstract

Motivated by the ATLAS and CMS discovery of a Higgs-like boson with a mass around 125 GeV, and by the need of explaining neutrino masses, we analyse the three canonical SUSY versions of the seesaw mechanism (type I, II and III) with CMSSM boundary conditions. In type II and III cases, SUSY particles are lighter than in the CMSSM (or the constrained type I seesaw), for the same set of input parameters at the universality scale. Thus, to explain \( {m_{{{h^0}}}}\simeq 125 \) GeV at low energies, one is forced into regions of parameter space with very large values of m 0, M 1/2 or A 0. We compare the squark and gluino masses allowed by the ATLAS and CMS ranges for \( {m_{{{h^{{^0}}}}}} \) (extracted from the 2011-2012 data), and discuss the possibility of distinguishing seesaw models in view of future results on SUSY searches. In particular, we briefly comment on the discovery potential of LHC upgrades, for squark/gluino mass ranges required by present Higgs mass constraints. A discrimination between different seesaw models cannot rely on the Higgs mass data alone, therefore we also take into account the MEG upper limit on BR(μ) and show that, in some cases, this may help to restrict the SUSY parameter space, as well as to set complementary limits on the seesaw scale.

Keywords

Higgs Physics Rare Decays Neutrino Physics Supersymmetric Standard Model 

References

  1. [1]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collaboration, J. Incandela, Stauts of the CMS SM Higgs search, talk given at CERN Seminar, July 4, CERN, Switzerland (2012).Google Scholar
  4. [4]
    ATLAS collaboration, F. Gianotti, Status of standard model Higgs searches at ATLAS, talk given at CERN Seminar, July 4, CERN, Switzerland (2012).Google Scholar
  5. [5]
    CDF and D0 collaborations, Updated combination of CDF and D0 searches for standard model Higgs boson production with up to 10.0 fb −1 of data, FERMILAB-CONF-12-318-E (2012) [arXiv:1207.0449].
  6. [6]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.L. Feng, K.T. Matchev and D. Sanford, Focus point supersymmetry redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \( B_s^0\ \to {\mu^{+}}{\mu^{-}} \) and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T. Moroi, R. Sato and T.T. Yanagida, Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    O. Buchmueller et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Gozdz, Lightest Higgs boson masses in the R-parity violating supersymmetry, arXiv:1201.0875 [INSPIRE].
  22. [22]
    J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Fileviez Perez, SUSY spectrum and the Higgs mass in the BLMSSM, Phys. Lett. B 711 (2012) 353 [arXiv:1201.1501] [INSPIRE].ADSGoogle Scholar
  25. [25]
    N. Karagiannakis, G. Lazarides and C. Pallis, Dark matter and Higgs mass in the CMSSM with Yukawa quasi-unification, J. Phys. Conf. Ser. 384 (2012) 012012 [arXiv:1201.2111] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Z. Kang, J. Li and T. Li, On naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    C.-F. Chang, K. Cheung, Y.-C. Lin and T.-C. Yuan, Mimicking the Standard Model Higgs boson in UMSSM, JHEP 06 (2012) 128 [arXiv:1202.0054] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, Phys. Rev. D 86 (2012) 095005 [arXiv:1202.1503] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Desai, B. Mukhopadhyaya and S. Niyogi, Constraints on invisible Higgs decay in MSSM in the light of diphoton rates from the LHC, arXiv:1202.5190 [INSPIRE].
  35. [35]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Maiani, A. Polosa and V. Riquer, Probing minimal supersymmetry at the LHC with the Higgs boson masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Cheng, J. Li, T. Li, D.V. Nanopoulos and C. Tong, Electroweak supersymmetry around the electroweak scale, arXiv:1202.6088 [INSPIRE].
  38. [38]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  40. [40]
    U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].Google Scholar
  41. [41]
    I. Gogoladze, Q. Shafi and C.S. Un, 125 GeV Higgs boson from t-b-τ Yukawa unification, JHEP 07 (2012) 055 [arXiv:1203.6082] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M.A. Ajaib, I. Gogoladze, F. Nasir and Q. Shafi, Revisiting mGMSB in light of a 125 GeV Higgs, Phys. Lett. B 713 (2012) 462 [arXiv:1204.2856] [INSPIRE].ADSGoogle Scholar
  43. [43]
    F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G.G. Ross, K. Schmidt-Hoberg and F. Staub, The generalised NMSSM at one loop: fine tuning and phenomenology, JHEP 08 (2012) 074 [arXiv:1205.1509] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, arXiv:1207.1096 [INSPIRE].
  46. [46]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    M. Hirsch, M. Malinsky, W. Porod, L. Reichert and F. Staub, Hefty MSSM-like light Higgs in extended gauge models, JHEP 02 (2012) 084 [arXiv:1110.3037] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Hirsch, W. Porod, L. Reichert and F. Staub, Phenomenology of the minimal supersymmetric U(1)B−L × U(1)R extension of the standard model, arXiv:1206.3516 [INSPIRE].
  50. [50]
    H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].ADSGoogle Scholar
  51. [51]
    L. Randall and M. Reece, Single-scale natural SUSY, arXiv:1206.6540 [INSPIRE].
  52. [52]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSGoogle Scholar
  54. [54]
    D.S. Alves, E. Izaguirre and J.G. Wacker, Higgs, binos and gluinos: split SUSY within reach, arXiv:1108.3390 [INSPIRE].
  55. [55]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N. Polonsky and S. Su, More corrections to the Higgs mass in supersymmetry, Phys. Lett. B 508 (2001) 103 [hep-ph/0010113] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Brignole, J. Casas, J. Espinosa and I. Navarro, Low scale supersymmetry breaking: effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Casas, J. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  65. [65]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P. Minkowski, μeγ at a rate of one out of 1 billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  67. [67]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).Google Scholar
  68. [68]
    M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P. van Nieuwenhuizen eds., North Holland, Amsterdam, The Netherlands (1979).Google Scholar
  69. [69]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Schechter and J. Valle, Neutrino Masses in SU(2) timesU(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  71. [71]
    J. Schechter and J. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  72. [72]
    W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSGoogle Scholar
  73. [73]
    R.E. Marshak and R.N. Mohapatra, Selection rules for baryon number nonconservation in gauge models, invited talk given at Orbis Scientiae, January 14-17, Coral Gables, U.S.A. (1980), published in Orbis Scientiae (1980) 277.Google Scholar
  74. [74]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  76. [76]
    T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  77. [77]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  78. [78]
    A. Rossi, Supersymmetric seesaw without singlet neutrinos: neutrino masses and lepton flavor violation, Phys. Rev. D 66 (2002) 075003 [hep-ph/0207006] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e +γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    J. Casas and A. Ibarra, Oscillating neutrinos and muone,γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    F. Joaquim, Running effects on neutrino parameters and l(i) → l(jpredictions in the triplet-extended MSSM, JHEP 06 (2010) 079 [arXiv:0912.3427] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    P. Fileviez Perez, Supersymmetric adjoint SU(5), Phys. Rev. D 76 (2007) 071701 [arXiv:0705.3589] [INSPIRE].ADSGoogle Scholar
  84. [84]
    MEG: Search for μeγ down to 10−14 branching ratio, proposal to PSI, documents and status at http://meg.web.psi.ch/.
  85. [85]
    S. Mihara, MEG experiment at the Paul Scherrer Institute, Nucl. Phys. A 844 (2010) 150C.ADSGoogle Scholar
  86. [86]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    G. Branco, R.G. Felipe and F. Joaquim, Leptonic CP-violation, arXiv:1111.5332 [INSPIRE].
  89. [89]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].
  92. [92]
    Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: Supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [INSPIRE].ADSGoogle Scholar
  93. [93]
    I. Jack and D. Jones, Soft supersymmetry breaking and finiteness, Phys. Lett. B 333 (1994) 372 [hep-ph/9405233] [INSPIRE].ADSGoogle Scholar
  94. [94]
    A. Dedes and P. Slavich, Two loop corrections to radiative electroweak symmetry breaking in the MSSM, Nucl. Phys. B 657 (2003) 333 [hep-ph/0212132] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the \( O\left( {\alpha_t^2} \right) \) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan beta, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  102. [102]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  103. [103]
    S.P. Martin, Complete two loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [INSPIRE].ADSGoogle Scholar
  104. [104]
    P. Kant, R. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [INSPIRE].ADSGoogle Scholar
  106. [106]
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSGoogle Scholar
  109. [109]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].ADSGoogle Scholar
  111. [111]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  112. [112]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  113. [113]
    T. Schwetz, Review on global fits, talk at What is ν?, June 11-July 14, Galileo Galilei Institute, Florence, Italy (2012).Google Scholar
  114. [114]
    ATLAS collaboration, G. Aad et al., Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collisions, JHEP 07 (2012) 167 [arXiv:1206.1760] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    CMS collaboration, S. Chatrchyan et al., Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    ATLAS, CDF, CMS, D0, LHCb collaboration, P. Eerola et al., Rare \( B_{(s)}^0\ \to {\mu^{+}}{\mu^{-}} \) decays, arXiv:1209.3440 [INSPIRE].
  117. [117]
    O. Buchmueller et al., The CMSSM and NUHM1 in light of 7 TeV LHC, B s to μ + μ and XENON100 data, arXiv:1207.7315 [INSPIRE].
  118. [118]
    M. Hirsch, S. Kaneko and W. Porod, Supersymmetric seesaw type. II. LHC and lepton flavour violating phenomenology, Phys. Rev. D 78 (2008) 093004 [arXiv:0806.3361] [INSPIRE].ADSGoogle Scholar
  119. [119]
    J. Esteves, S. Kaneko, J. Romao, M. Hirsch and W. Porod, Dark matter in minimal supergravity with type-II seesaw, Phys. Rev. D 80 (2009) 095003 [arXiv:0907.5090] [INSPIRE].ADSGoogle Scholar
  120. [120]
    J. Esteves et al., LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM, JHEP 12 (2010) 077 [arXiv:1011.0348] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    J. Esteves et al., Dark matter and LHC phenomenology in a left-right supersymmetric model, JHEP 01 (2012) 095 [arXiv:1109.6478] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    C. Biggio, L. Calibbi, A. Masiero and S.K. Vempati, Postcards from oases in the desert: phenomenology of SUSY with intermediate scales, JHEP 08 (2012) 150 [arXiv:1205.6817] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    S. Heinemeyer, M. Herrero, S. Penaranda and A. Rodriguez-Sanchez, Higgs Boson masses in the MSSM with heavy Majorana neutrinos, JHEP 05 (2011) 063 [arXiv:1007.5512] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    C. Arbelaez, M. Hirsch and L. Reichert, Supersymmetric mass spectra and the seesaw type-I scale, JHEP 02 (2012) 112 [arXiv:1112.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    S. Antusch, E. Arganda, M. Herrero and A. Teixeira, Impact of θ(13) on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    L. Calibbi, A. Faccia, A. Masiero and S. Vempati, Running U (e3) and BR(μe + γ) in SUSY-GUTs, JHEP 07 (2007) 012 [hep-ph/0610241] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    M. Hirsch, J. Valle, W. Porod, J. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [INSPIRE].ADSGoogle Scholar
  128. [128]
    F. Joaquim and A. Rossi, Phenomenology of the triplet seesaw mechanism with gauge and Yukawa mediation of SUSY breaking, Nucl. Phys. B 765 (2007) 71 [hep-ph/0607298] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    F. Joaquim and A. Rossi, Gauge and Yukawa mediated supersymmetry breaking in the triplet seesaw scenario, Phys. Rev. Lett. 97 (2006) 181801 [hep-ph/0604083] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    A. Brignole, F.R. Joaquim and A. Rossi, Beyond the standard seesaw: neutrino masses from Kähler operators and broken supersymmetry, JHEP 08 (2010) 133 [arXiv:1007.1942] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    C. Biggio and L. Calibbi, Phenomenology of SUSY SU(5) with type-I+III seesaw, JHEP 10 (2010) 037 [arXiv:1007.3750] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  133. [133]
    H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, arXiv:1207.4846.
  134. [134]
    R.-D. Heuer, News from CERN, LHC status and strategy for linear colliders, arXiv:1202.5860 [INSPIRE].
  135. [135]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  136. [136]
    J. Esteves, J. Romao, M. Hirsch, F. Staub and W. Porod, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, Phys. Rev. D 83 (2011) 013003 [arXiv:1010.6000] [INSPIRE].ADSGoogle Scholar
  137. [137]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].ADSGoogle Scholar
  138. [138]
    J. Esteves et al., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, JHEP 05 (2009) 003 [arXiv:0903.1408] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    A. Abada, A. Figueiredo, J. Romao and A. Teixeira, Probing the supersymmetric type-III seesaw: LFV at low-energies and at the LHC, JHEP 08 (2011) 099 [arXiv:1104.3962] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.AHEP Group, Instituto de Física Corpuscular — C.S.I.C./Universitat de València, Edificio de Institutos de PaternaValènciaSpain
  2. 2.Departamento de Física and Centro de Física Teórica de Partículas, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal
  3. 3.Laboratoire de Physique Théorique, CNRS — UMR 8627Orsay CedexFrance

Personalised recommendations