Journal of High Energy Physics

, 2011:150 | Cite as

Efficient matrix-element matching with sector showers

Open Access
Article

Abstract

A Markovian shower algorithm based on “sector antennae” is presented and its main properties illustrated. Tree-level full-color matrix elements can be automatically incorporated in the algorithm and are re-interpreted as process-dependent 2 → n antenna functions. In hard parts of phase-space, these functions generate tree-level matrix-element corrections to the shower. In soft parts, they should improve the logarithmic accuracy of it. The number of matrix-element evaluations required per order of matching is 1, with an unweighting efficiency that remains very high for arbitrary numbers of legs. Total rates can be augmented to NLO precision in a straightforward way. As a proof of concept, we present an implementation in the publicly available Vincia plug-in to the Pythia 8 event generator, for hadronic Z 0 decays including tree-level matrix elements through \( \mathcal{O}\alpha_s^4 \).

Keywords

QCD Phenomenology 

References

  1. [1]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].
  2. [2]
    CompHEP collaboration, E. Boos et al., CompHEP 4.4: Automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    A. Kanaki and C.G. Papadopoulos, HELAC: A Package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [INSPIRE].CrossRefMATHADSGoogle Scholar
  5. [5]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    M. Moretti, T. Ohl and J. Reuter, O’Mega: An Optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
  7. [7]
    M. Bähr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    P. Skands, QCD for Collider Physics, arXiv:1104.2863 [INSPIRE].
  10. [10]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    N. Lavesson and L. Lönnblad, Merging parton showers and matrix elements: Back to basics, JHEP 04 (2008) 085 [arXiv:0712.2966] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    W. Giele, D. Kosower and P. Skands, Higher-Order Corrections to Timelike Jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  18. [18]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A Simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Gehrmann-De Ridder, M. Ritzmann and P. Skands, Timelike Dipole-Antenna Showers with Massive Fermions, arXiv:1108.6172 [INSPIRE].
  20. [20]
    P.D. Draggiotis, A. van Hameren and R. Kleiss, SARGE: An Algorithm for generating QCD antennas, Phys. Lett. B 483 (2000) 124 [hep-ph/0004047] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. II. A Phase space generator from a reweighted parton shower, JHEP 12 (2008) 011 [arXiv:0801.4028] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    M. Bengtsson and T. Sjöstrand, Coherent Parton Showers Versus Matrix Elements: Implications of PETRA - PEP Data, Phys. Lett. B 185 (1987) 435 [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    P. Nason and G. Ridolfi, A Positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    G. Marchesini and B. Webber, Simulation of QCD Jets Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 1 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    M. Bengtsson and T. Sjöstrand, A Comparative Study of Coherent and Noncoherent Parton Shower Evolution, Nucl. Phys. B 289 (1987) 810 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  31. [31]
    Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114 [arXiv:0706.0017] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B 306 (1988) 746 [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D.A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [Erratum added online, hep-ph/0505111] [hep-ph/0505111] [INSPIRE].
  40. [40]
    A.J. Larkoski and M.E. Peskin, Spin-Dependent Antenna Splitting Functions, Phys. Rev. D 81 (2010) 054010 [arXiv:0908.2450] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A.J. Larkoski and M.E. Peskin, Antenna Splitting Functions for Massive Particles, Phys. Rev. D 84 (2011) 034034 [arXiv:1106.2182] [INSPIRE].ADSGoogle Scholar
  42. [42]
  43. [43]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].CrossRefMATHADSGoogle Scholar
  44. [44]
    P.Z. Skands and S. Weinzierl, Some remarks on dipole showers and the DGLAP equation, Phys. Rev. D 79 (2009) 074021 [arXiv:0903.2150] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Gehrmann-de Ridder, M. Ritzmann and P. Skands, Timelike Dipole-Antenna Showers with Massive Fermions, CERN-PH-TH/2011-133 [arXiv:1108.6172] [INSPIRE].
  46. [46]
    R. Kleiss, W. Stirling and S. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK Report KEK-91-11, Tsukuba Japan (1992).
  48. [48]
    J. Lopez-Villarejo and P. Skands, Strong and Smooth Ordering in Antenna Showers, work in progress (Les Houches, 2011).Google Scholar
  49. [49]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Infrared structure of e + e → 2 jets at NNLO, Nucl. Phys. B 691 (2004) 195 [hep-ph/0403057] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].ADSGoogle Scholar
  52. [52]
    L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    L. Hartgring, E. Laenen and P. Skands, On the Next-to-Leading Structure of Antenna Showers, in preparation (2011).Google Scholar
  54. [54]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    G. Lafferty, P. Reeves and M. Whalley, A compilation of inclusive particle production data in e + e annihilation, J. Phys. G 21 (1995) A1.ADSGoogle Scholar
  56. [56]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Theoretical Physics, CERN CH-1211Geneva 23Switzerland

Personalised recommendations