Journal of High Energy Physics

, 2011:137 | Cite as

Superluminal neutrinos in long baseline experiments and SN1987a

  • Giacomo Cacciapaglia
  • Aldo Deandrea
  • Luca Panizzi
Open Access
Article

Abstract

Precise tests of Lorentz invariance in neutrinos can be performed using long baseline experiments such as MINOS and OPERA or neutrinos from astrophysical sources. The MINOS collaboration reported a measurement of the muonic neutrino velocities that hints to super-luminal propagation, very recently confirmed at 6σ by OPERA. We consider a general parametrisation which goes beyond the usual linear or quadratic violation considered in quantum-gravitational models. We also propose a toy model showing why Lorentz violation can be specific to the neutrino sector and give rise to a generic energy behaviour Eα, where α is not necessarily an integer number. Supernova bounds and the preferred MINOS and OPERA regions show a tension, due to the absence of shape distortion in the neutrino bunch in the far detector of MINOS. The energy independence of the effect has also been pointed out by the OPERA results.

Keywords

Beyond Standard Model Neutrino Physics 

References

  1. [1]
    V. Kostelecky and N. Russell, Data Tables for Lorentz and CPT Violation, Rev. Mod. Phys. 83 (2011) 11 [arXiv:0801.0287] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    J.R. Ellis, N. Mavromatos, D.V. Nanopoulos and A. Sakharov, Space-time foam may violate the principle of equivalence, Int. J. Mod. Phys. A 19 (2004) 4413 [gr-qc/0312044] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    G.R. Kalbfleisch, N. Baggett, E.C. Fowler and J. Alspector, Experimental comparison of neutrino, anti-neutrino, and muon velocities, Phys. Rev. Lett. 43 (1979) 1361 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam, Phys. Rev. D 76 (2007) 072005 [arXiv:0706.0437] [INSPIRE].ADSGoogle Scholar
  5. [5]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  6. [6]
    V. Ammosov and G. Volkov, Can neutrinos probe extra dimensions?, hep-ph/0008032 [INSPIRE].
  7. [7]
    C. Csáki, J. Erlich and C. Grojean, Gravitational Lorentz violations and adjustment of the cosmological constant in asymmetrically warped space-times, Nucl. Phys. B 604 (2001) 312 [hep-th/0012143] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    H. Pas, S. Pakvasa and T.J. Weiler, Sterile-active neutrino oscillations and shortcuts in the extra dimension, Phys. Rev. D 72 (2005) 095017 [hep-ph/0504096] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Cacciapaglia, M. Cirelli, Y. Lin and A. Romanino, Bulk neutrinos and core collapse supernovae, Phys. Rev. D 67 (2003) 053001 [hep-ph/0209063] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.R. Ellis, N. Harries, A. Meregaglia, A. Rubbia and A. Sakharov, Probes of Lorentz Violation in Neutrino Propagation, Phys. Rev. D 78 (2008) 033013 [arXiv:0805.0253] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Sakharov, J. Ellis, N. Harries, A. Meregaglia and A. Rubbia, Exploration of Possible Quantum Gravity Effects with Neutrinos II: Lorentz Violation in Neutrino Propagation, J. Phys. Conf. Ser. 171 (2009) 012039 [arXiv:0903.5048] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    G. von Gersdorff and M. Quirós, Conformal Neutrinos: an Alternative to the See-saw Mechanism, Phys. Lett. B 678 (2009) 317 [arXiv:0901.0006] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Y. Grossman and D.J. Robinson, Composite Dirac Neutrinos, JHEP 01 (2011) 132 [arXiv:1009.2781] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].MATHADSMathSciNetGoogle Scholar
  15. [15]
    H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  17. [17]
    G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/Unparticle Correspondence, JHEP 02 (2009) 049 [arXiv:0804.0424] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    A. Delgado, J. Espinosa, J. No and M. Quirós, Phantom Higgs from Unparticles, JHEP 11 (2008) 071 [arXiv:0804.4574] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    D. Stancato and J. Terning, The Unhiggs, JHEP 11 (2009) 101 [arXiv:0807.3961] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    M.J. Longo, New precision tests of the Einstein equivalence principle from Sn1987a, Phys. Rev. Lett. 60 (1988) 173 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    L. Stodolsky, The Speed of light and the speed of neutrinos, Phys. Lett. B 201 (1988) 353 [INSPIRE].ADSGoogle Scholar
  22. [22]
    T.J. Loredo and D.Q. Lamb, Bayesian analysis of neutrinos observed from supernova SN-1987A, Phys. Rev. D 65 (2002) 063002 [astro-ph/0107260] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Lunardini and A.Y. Smirnov, Neutrinos from SN1987A: Flavor conversion and interpretation of results, Astropart. Phys. 21 (2004) 703 [hep-ph/0402128] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    G. Pagliaroli, F. Vissani, M. Costantini and A. Ianni, Improved analysis of SN1987A antineutrino events, Astropart. Phys. 31 (2009) 163 [arXiv:0810.0466] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    C. Giunti and C. Kim, Coherence of neutrino oscillations in the wave packet approach, Phys. Rev. D 58 (1998) 017301 [hep-ph/9711363] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Giunti, Coherence and wave packets in neutrino oscillations, Found. Phys. Lett. 17 (2004) 103 [hep-ph/0302026] [INSPIRE].CrossRefMATHGoogle Scholar
  27. [27]
    A.G. Cohen and S.L. Glashow, Pair Creation Constrains Superluminal Neutrino Propagation, Phys. Rev. Lett. 107 (2011) 181803 [arXiv:1109.6562] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    X.-J. Bi, P.-F. Yin, Z.-H. Yu and Q. Yuan, Constraints and tests of the OPERA superluminal neutrinos, arXiv:1109.6667 [INSPIRE].
  29. [29]
    L. Gonzalez-Mestres, Astrophysical consequences of the OPERA superluminal neutrino, arXiv:1109.6630 [INSPIRE].
  30. [30]
    G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, OPERA neutrinos and relativity, arXiv:1110.0521 [INSPIRE].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Giacomo Cacciapaglia
    • 1
    • 2
    • 3
  • Aldo Deandrea
    • 1
    • 2
  • Luca Panizzi
    • 1
    • 2
  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de LyonVilleurbanne CedexFrance
  3. 3.Department of PhysicsKing’s College LondonLondonUK

Personalised recommendations