Journal of High Energy Physics

, 2011:129

Split states, entropy enigmas, holes and halos

Article

Abstract

We investigate degeneracies of BPS states of D-branes on compact Calabi-Yau manifolds. We develop a factorization formula for BPS indices using attractor flow trees associated to multicentered black hole bound states. This enables us to study background dependence of the BPS spectrum, to compute explicitly exact indices of various nontrivial D-brane systems, and to clarify the subtle relation of Donaldson-Thomas invariants to BPS indices of stable D6-D2-D0 states, realized in supergravity as “hole halos.” We introduce a convergent generating function for D4 indices in the large CY volume limit, and prove it can be written as a modular average of its polar part, generalizing the fareytail expansion of the elliptic genus. We show polar states are “split” D6-anti-D6 bound states, and that the partition function factorizes accordingly, leading to a refined version of the OSV conjecture. This differs from the original conjecture in several aspects. In particular we obtain a nontrivial measure factor \( g_{\text{top}}^{{ - 2}}{e^{{ - K}}} \) and find factorization requires a cutoff. We show that the main factor determining the cutoff and therefore the error is the existence of “swing states” — D6 states which exist at large radius but do not form stable D6-anti-D6 bound states. We point out a likely breakdown of the OSV conjecture at small gtop (in the large background CY volume limit), due to the surprising phenomenon that for sufficiently large background Kähler moduli, a charge Λ Γ supporting single centered black holes of entropy ~ Λ2S(Γ) also admits two-centered BPS black hole realizations whose entropy grows like Λ3 when Λ → ∞.

Keywords

Black Holes in String Theory D-branes Gauge-gravity correspondence Differential and Algebraic Geometry 

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Vafa, Black holes and Calabi-Yau threefolds, Adv. Theor. Math. Phys. 2 (1998) 207 [hep-th/9711067] [INSPIRE].MATHMathSciNetGoogle Scholar
  4. [4]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Deviations from the area law for supersymmetric black holes, Fortsch. Phys. 48 (2000) 49 [hep-th/9904005] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Area law corrections from state counting and supergravity, Class. Quant. Grav. 17 (2000) 1007 [hep-th/9910179] [INSPIRE].MATHADSCrossRefGoogle Scholar
  9. [9]
    T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Exact and asymptotic degeneracies of small black holes, JHEP 08 (2005) 021 [hep-th/0502157] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes, JHEP 10 (2005) 096 [hep-th/0507014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D. Shih and X. Yin, Exact black hole degeneracies and the topological string, JHEP 04 (2006) 034 [hep-th/0508174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic N =4 string states and black hole entropy, JHEP 12 (2004) 075 [hep-th/0412287] [INSPIRE].ADSGoogle Scholar
  15. [15]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Black hole partition functions and duality, JHEP 03 (2006) 074 [hep-th/0601108] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    F. Denef, Counting D-brane ground states, talk given at Black holes, topological strings, and invariants of holomorphic submanifolds, Harvard, Cambridge U.S.A. January 31 2006.Google Scholar
  17. [17]
    F. Denef, A derivation of OSV (refined), talk given at workshop Black holes, black rings and topological strings, Munich Germany April 1 2006.Google Scholar
  18. [18]
    F. Denef, From OSV to OSV, talk at Strings06, Beijing China 19–24 June 2006.Google Scholar
  19. [19]
    G. Moore, Split polar attractors, talk at the 4th Simons workshop, http://insti.physics.sunysb.edu/itp/conf/simonswork4/, Stony Brook U.S.A. July 24-August 25 2006.
  20. [20]
    D. Gaiotto, A. Strominger and X. Yin, From AdS 3 /CFT 2 to black holes/topological strings, JHEP 09 (2007) 050 [hep-th/0602046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    X. Yin, The M 5 brane elliptic genus, talk at Strings06, Beijing China 19–24 June 2006.Google Scholar
  22. [22]
    J. de Boer, M.C. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, A farey tail for attractor black holes, JHEP 11 (2006) 024 [hep-th/0608059] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    E. Verlinde, A farey tail for N = 2 black holes, talk at Strings06, Beijing China 19–24 June 2006.Google Scholar
  24. [24]
    C. Beasley et al., Why Z BH = |Z top|2, hep-th/0608021 [INSPIRE].
  25. [25]
    E.P. Verlinde, Attractors and the holomorphic anomaly, hep-th/0412139 [INSPIRE].
  26. [26]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    F. Denef, On the correspondence between D-branes and stationary supergravity solutions of type-II Calabi-Yau compactifications, hep-th/0010222 [INSPIRE].
  28. [28]
    F. Denef, B.R. Greene and M. Raugas, Split attractor flows and the spectrum of BPS D-branes on the quintic, JHEP 05 (2001) 012 [hep-th/0101135] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, hep-th/0304094 [INSPIRE].
  30. [30]
    M.-x. Huang, A. Klemm, M. Mariño and A. Tavanfar, Black holes and large order quantum geometry, Phys. Rev. D 79 (2009) 066001 [arXiv:0704.2440] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole farey tail, hep-th/0005003 [INSPIRE].
  32. [32]
    G.W. Moore, Les Houches lectures on strings and arithmetic, hep-th/0401049 [INSPIRE].
  33. [33]
    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    R. Dijkgraaf, C. Vafa and E. Verlinde, M-theory and a topological string duality, hep-th/0602087 [INSPIRE].
  35. [35]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    R. Gopakumar and C. Vafa, M theory and topological strings. 1., hep-th/9809187 [INSPIRE].
  38. [38]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].
  39. [39]
    A. Klemm, M. Kreuzer, E. Riegler and E. Scheidegger, Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections, JHEP 05 (2005) 023 [hep-th/0410018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, JHEP 04 (2008) 011 [hep-th/0312022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory, I, math.AG/0312059.
  42. [42]
    D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory, II, math.AG/0406092.
  43. [43]
    R. Thomas, Gauge theory on Calabi-Yau manifolds, Ph.D. thesis, University of Oxford, Oxford U.K. (1997).Google Scholar
  44. [44]
    S. Donaldson and R. Thomas, Gauge theory in higher dimensions, in The geometric universe: science, geometry, and the work of Roger Penrose, S. Huggett et al. eds., Oxford University Press, Oxford U.K. (1998).Google Scholar
  45. [45]
    R. Thomas, A holomorphic Casson invariant for Calabi-Yau three folds and bundles on K3 fibrations, math.AG/9806111 [INSPIRE].
  46. [46]
    B. Pioline, Lectures on black holes, topological strings and quantum attractors, Class. Quant. Grav. 23 (2006) S981 [hep-th/0607227] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    I. Brunner, M.R. Douglas, A.E. Lawrence and C. Romelsberger, D-branes on the quintic, JHEP 08 (2000) 015 [hep-th/9906200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    J. Gomis, F. Marchesano and D. Mateos, An open string landscape, JHEP 11 (2005) 021 [hep-th/0506179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    D. Gaiotto et al., D4-D0 branes on the quintic, JHEP 03 (2006) 019 [hep-th/0509168] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999) 819 [hep-th/9907189] [INSPIRE].MATHMathSciNetGoogle Scholar
  52. [52]
    D. Gaiotto, A. Strominger and X. Yin, The M5-brane elliptic genus: modularity and BPS states, JHEP 08 (2007) 070 [hep-th/0607010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    B.J. Spence, Topological Born-Infeld actions and D-branes, hep-th/9907053 [INSPIRE].
  54. [54]
    D. Belov and G.W. Moore, Conformal blocks for AdS 5 singletons, hep-th/0412167 [INSPIRE].
  55. [55]
    A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [INSPIRE].
  56. [56]
    N. Nekrasov, Localizing gauge theory, in XIV th international congress on mathematical physics, Lisbon Portugal 2003, J.-C. Zambrini ed., World Scientific, Singapore (2005), pg. 645.Google Scholar
  57. [57]
    A.A. Tseytlin, Selfduality of Born-Infeld action and Dirichlet three-brane of type IIB superstring theory, Nucl. Phys. B 469 (1996) 51 [hep-th/9602064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestija 14 (1980) 103 [Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 111].MATHADSCrossRefGoogle Scholar
  59. [59]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS 3 /CF T 2 correspondence, hep-th/0403225 [INSPIRE].
  60. [60]
    J. Milnor and D. Husemoller, Symmetric bilinear forms, Ergeb. Math. Grenzgeb., Band 73. MR 58 (1973) #22129, Springer-Verlag, New York U.S.A. (1973).Google Scholar
  61. [61]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    M.R. Douglas, Topics in D geometry, Class. Quant. Grav. 17 (2000) 1057 [hep-th/9910170] [INSPIRE].MATHADSCrossRefGoogle Scholar
  64. [64]
    G.W. Moore, Arithmetic and attractors, hep-th/9807087 [INSPIRE].
  65. [65]
    G.W. Moore, Attractors and arithmetic, hep-th/9807056 [INSPIRE].
  66. [66]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in N =2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    M. Shmakova, Calabi-Yau black holes, Phys. Rev. D 56 (1997) 540 [hep-th/9612076] [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    M.R. Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42 (2001) 2818 [hep-th/0011017] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    T. Bridgeland, Spaces of stability conditions, math.AG/0611510.
  73. [73]
    D. Joyce, Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, hep-th/0607039 [INSPIRE].
  74. [74]
    F. Denef, (Dis)assembling special Lagrangians, hep-th/0107152 [INSPIRE].
  75. [75]
    D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    D. Gaiotto, A. Strominger and X. Yin, 5D black rings and 4D black holes, JHEP 02 (2006) 023 [hep-th/0504126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    K. Behrndt, G. Lopes Cardoso and S. Mahapatra, Exploring the relation between 4D and 5D BPS solutions, Nucl. Phys. B 732 (2006) 200 [hep-th/0506251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    M.C. Cheng, More bubbling solutions, JHEP 03 (2007) 070 [hep-th/0611156] [INSPIRE].ADSGoogle Scholar
  79. [79]
    I. Bena and P. Kraus, Microscopic description of black rings in AdS/CFT, JHEP 12 (2004) 070 [hep-th/0408186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    I. Bena and P. Kraus, Microstates of the D1-D5-KK system, Phys. Rev. D 72 (2005) 025007 [hep-th/0503053] [INSPIRE].ADSMathSciNetGoogle Scholar
  81. [81]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [INSPIRE].ADSMathSciNetGoogle Scholar
  82. [82]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric 4D rotating black holes from 5D black rings, JHEP 08 (2005) 042 [hep-th/0504125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].ADSMathSciNetGoogle Scholar
  86. [86]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S 2, JHEP 11 (2008) 050 [arXiv:0802.2257] [INSPIRE].CrossRefGoogle Scholar
  88. [88]
    S. Kachru and J. McGreevy, Supersymmetric three cycles and supersymmetry breaking, Phys. Rev. D 61 (2000) 026001 [hep-th/9908135] [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    M.R. Douglas, B. Fiol and C. Romelsberger, Stability and BPS branes, JHEP 09 (2005) 006 [hep-th/0002037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    E. Witten, BPS bound states of D0-D6 and D0-D8 systems in a B field, JHEP 04 (2002) 012 [hep-th/0012054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    M. Berkooz, M.R. Douglas and R.G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    C. Vafa, Gas of D-branes and Hagedorn density of BPS states, Nucl. Phys. B 463 (1996) 415 [hep-th/9511088] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    J.A. Harvey and G.W. Moore, On the algebras of BPS states, Commun. Math. Phys. 197 (1998) 489 [hep-th/9609017] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  94. [94]
    E. Witten, On the conformal field theory of the Higgs branch, JHEP 07 (1997) 003 [hep-th/9707093] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    R. Dijkgraaf, Fields, strings, matrices and symmetric products, hep-th/9912104 [INSPIRE].
  96. [96]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193.MATHMathSciNetCrossRefGoogle Scholar
  98. [98]
    L. Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lect. Notes Math. 1572 (1994) 1, Springer-Verlag, Berlin Germany (1994).CrossRefGoogle Scholar
  99. [99]
    M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003) 349 [math.QA/0204059].MATHADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys. B 433 (1995) 501 [hep-th/9406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  101. [101]
    S.H. Katz, A. Klemm and C. Vafa, M theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999) 1445 [hep-th/9910181] [INSPIRE].MATHMathSciNetGoogle Scholar
  102. [102]
    J.A. Harvey and G.W. Moore, Five-brane instantons and R 2 couplings in N = 4 string theory, Phys. Rev. D 57 (1998) 2323 [hep-th/9610237] [INSPIRE].ADSMathSciNetGoogle Scholar
  103. [103]
    M. Mariño and G.W. Moore, Counting higher genus curves in a Calabi-Yau manifold, Nucl. Phys. B 543 (1999) 592 [hep-th/9808131] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    A. Klemm and M. Mariño, Counting BPS states on the enriques Calabi-Yau, Commun. Math. Phys. 280 (2008) 27 [hep-th/0512227] [INSPIRE].MATHADSCrossRefGoogle Scholar
  105. [105]
    R. Lazarsfeld, Positivity in algebraic geometry I, Ergeb. Math. Grenzgeb. 48 (2004) 1, Springer-Verlag, Berlin Germany (2004).MathSciNetGoogle Scholar
  106. [106]
    M.R. Douglas, R. Reinbacher and S.-T. Yau, Branes, bundles and attractors: Bogomolov and beyond, math.AG/0604597 [INSPIRE].
  107. [107]
    I. Bena, D.-E. Diaconescu and B. Florea, Black string entropy and Fourier-Mukai transform, JHEP 04 (2007) 045 [hep-th/0610068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    M.-x. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Lect. Notes Phys. 757 (2009) 45 [hep-th/0612125] [INSPIRE].ADSMathSciNetGoogle Scholar
  109. [109]
    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  110. [110]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, U.S.A. (1978).MATHGoogle Scholar
  111. [111]
    R. Minasian, G.W. Moore and D. Tsimpis, Calabi-Yau black holes and (0, 4) σ-models, Commun. Math. Phys. 209 (2000) 325 [hep-th/9904217] [INSPIRE].MATHADSMathSciNetGoogle Scholar
  112. [112]
    I.R. Shafarevich, Basic algebraic geometry, volume 1, Springer, Berlin Germany (1994), pg. 245.CrossRefGoogle Scholar
  113. [113]
    E. Cattani, A. Kaplan and P. Deligne, On the locus of Hodge classes, J. Amer. Math. Soc. 8 (1995) 483 [alg-geom/9402009].MATHMathSciNetCrossRefGoogle Scholar
  114. [114]
    W. Lerche, P. Mayr and N. Warner, N = 1 special geometry, mixed Hodge variations and toric geometry, hep-th/0208039 [INSPIRE].
  115. [115]
    L. Martucci, D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP 06 (2006) 033 [hep-th/0602129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  116. [116]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  117. [117]
    S. Hosono, M.-H. Saito and A. Takahashi, Relative Lefschetz action and BPS state counting, math.AG/0105148 [INSPIRE].
  118. [118]
    G. Szegö, Orthogonal polynomials, fourth edition, Amer. Math. Soc. Colloq. Publ. 23, Providence U.S.A. (1975).Google Scholar
  119. [119]
    H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux compactifications, Lett. Math. Phys. 74 (2005) 311 [hep-th/0502211] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  120. [120]
    M. Günaydin, A. Neitzke and B. Pioline, Topological wave functions and heat equations, JHEP 12 (2006) 070 [hep-th/0607200] [INSPIRE].CrossRefGoogle Scholar
  121. [121]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  122. [122]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    J.A. Harvey and G.W. Moore, Algebras, BPS states and strings, Nucl. Phys. B 463 (1996) 315 [hep-th/9510182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  124. [124]
    G.W. Moore, String duality, automorphic forms and generalized Kac-Moody algebras, Nucl. Phys. Proc. Suppl. 67 (1998) 56 [hep-th/9710198] [INSPIRE].MATHADSCrossRefGoogle Scholar
  125. [125]
    C.A.M. Peters, A criterion for flatness of Hodge bundles over curves and geometric applications, Math. Ann. 268 (1984) 1.MATHMathSciNetCrossRefGoogle Scholar
  126. [126]
    D.S. Freed, G.W. Moore and G. Segal, The uncertainty of fluxes, Commun. Math. Phys. 271 (2007) 247 [hep-th/0605198] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  127. [127]
    D.S. Freed, G.W. Moore and G. Segal, Heisenberg groups and noncommutative fluxes, Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  128. [128]
    G.W. Moore, Anomalies, Gauss laws and Page charges in M-theory, Comptes Rendus Physique 6 (2005) 251 [hep-th/0409158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Instituut voor Theoretische Fysica, KU LeuvenLeuvenBelgium
  2. 2.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations