Journal of High Energy Physics

, 2011:126 | Cite as

Quantum gravity: mixed states from diffeomorphism anomalies

Article

Abstract

In a previous paper, we discussed simple examples like particle on a circle and molecules to argue that mixed states can arise from anomalous symmetries. This idea was applied to the breakdown (anomaly) of color SU(3) in the presence of non-abelian monopoles. Such mixed states create entropy as well.

In this article, we extend these ideas to the topological geons of Friedman and Sorkin in quantum gravity. The “large diffeos” or mapping class groups can become anomalous in their quantum theory as we show. One way to eliminate these anomalies is to use mixed states, thereby creating entropy. These ideas may have something to do with black hole entropy as we speculate.

Keywords

Models of Quantum Gravity Anomalies in Field and String Theories Topological Field Theories Solitons Monopoles and Instantons 

References

  1. [1]
    L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    E. Witten, Global gravitational anomalies, Commun. Math. Phys. 100 (1985) 197 [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  3. [3]
    S. Surya and S. Vaidya, Global anomalies in canonical gravity, Nucl. Phys. B 523 (1998) 391 [hep-th/9709170] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    E. Witten, An SU(2) Anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    A. Balachandran and S. Vaidya, Emergent chiral symmetry: parity and time reversal doubles, Int. J. Mod. Phys. A 12 (1997) 5325 [hep-th/9612053] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Balachandran and S. Vaidya, Parity doubles in quark physics, Phys. Rev. Lett. 78 (1997) 13 [hep-ph/9606283] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    A. Balachandran and S. Vaidya, Skyrmions, spectral flow and parity doubles, Int. J. Mod. Phys. A 14 (1999) 445 [hep-th/9803125] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    J. Friedman and R. Sorkin, Spin 1/2 from gravity, Phys. Rev. Lett. 44 (1980) 1100 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    J. Friedman and R. Sorkin, Spin 1/2 from gravity, Phys. Rev. Lett. 45 (1980) 148.CrossRefADSGoogle Scholar
  10. [10]
    C. Aneziris et al., Aspects of spin and statistics in generally covariant theories, Int. J. Mod. Phys. A 4 (1989) 5459 [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    J. Esteve, Anomalies in conservation laws in the hamiltonian formalism, Phys. Rev. D 34 (1986) 674 [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    M. Aguado, M. Asorey and J. Esteve, Vacuum nodes and anomalies in quantum theories, Commun. Math. Phys. 218 (2001) 233 [hep-th/0010227] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  13. [13]
    A. Balachandran and A.R. de Queiroz, Mixed states from anomalies, arXiv:1108.3898 [INSPIRE].
  14. [14]
    E. Witten, A simple proof of the positive energy theorem, Commun. Math. Phys. 80 (1981) 381 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    G. Gibbons, S. Hawking, G.T. Horowitz and M.J. Perry, Positive mass theorems for black holes, Commun. Math. Phys. 88 (1983) 295 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    A. Balachandran, Bringing up a quantum baby, quant-ph/9702055 [INSPIRE].
  17. [17]
    A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Classical topology and quantum states, World Scientific, Singapore (1991).CrossRefMATHGoogle Scholar
  18. [18]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and riemannian geometry — I, Math. Proc. Camb. Phil. Soc. 77 (1975) 43.CrossRefMathSciNetMATHGoogle Scholar
  19. [19]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and riemannian geometry — II, Math. Proc. Camb. Phil. Soc. 78 (1975) 405.CrossRefMathSciNetMATHGoogle Scholar
  20. [20]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and riemannian geometry — III, Math. Proc. Camb. Phil. Soc. 79 (1976) 71.CrossRefMathSciNetMATHGoogle Scholar
  21. [21]
    I. Gelfand and M. Naimark, On the inclusion of a normed ring into the ring of operators in a Hilbert space, Matem. Sbornik 12 (1943) 197.Google Scholar
  22. [22]
    A. Balachandran, G. Bimonte, G. Marmo and A. Simoni, Topology change and quantum physics, Nucl. Phys. B 446 (1995) 299 [gr-qc/9503046] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    J. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton U.S.A. (1974).Google Scholar
  24. [24]
    A. Balachandran et al., Monopole topology and the problem of color, Phys. Rev. Lett. 50 (1983) 1553 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    A. Balachandran et al., Nonabelian monopoles break color. 1. Classical mechanics, Phys. Rev. D 29 (1984) 2919 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Balachandran et al., Nonabelian monopoles break color. 2. Field theory and quantum mechanics, Phys. Rev. D 29 (1984) 2936 [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.L. Friedman, K. Schleich and D.M. Witt, Topological censorship, Phys. Rev. Lett. 71 (1993) 1486 [Erratum ibid. 75 (1995) 1872] [gr-qc/9305017] [INSPIRE].
  28. [28]
    D. Gannon, Singularities in nonsimply connected space-times, J. Math. Phys. 16 (1975) 2364.CrossRefADSMathSciNetMATHGoogle Scholar
  29. [29]
    D. Gannon, On the topology of spacelike hypersurfaces, singularities, and black holes, Gen. Rel. Grav. 7 (1976) 219.CrossRefADSMathSciNetMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsSyracuse UniversitySyracuseUSA
  2. 2.International Institute of Physics (IIP-UFRN)NatalBrazil
  3. 3.Instituto de Fisica, Universidade de BrasiliaBrasiliaBrazil

Personalised recommendations