Journal of High Energy Physics

, 2011:112 | Cite as

The trans-Planckian problem as a guiding principle

  • L. C. Barbado
  • C. Barceló
  • L. J. Garay
  • G. Jannes
Article

Abstract

We use the avoidance of the trans-Planckian problem of Hawking radiation as a guiding principle in searching for a compelling scenario for the evaporation of black holes or black-hole-like objects. We argue that there exist only three possible scenarios, depending on whether the classical notion of long-lived horizon is preserved by high-energy physics and on whether the dark and compact astrophysical objects that we observe have long-lived horizons in the first place. Along the way, we find that i) a theory with high-energy superluminal signalling and a long-lived trapping horizon would be extremely unstable in astrophysical terms and that ii) stellar pulsations of objects hovering right outside but extremely close to their gravitational radius can result in a mechanism for Hawking-like emission.

Keywords

Black Holes Models of Quantum Gravity 

References

  1. [1]
    S. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  4. [4]
    L.C. Barbado, C. Barceló and L.J. Garay, Hawking radiation as perceived by different observers, Class. Quant. Grav. 28 (2011) 125021 [arXiv:1101.4382] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Jacobson, Black hole evaporation and ultrashort distances, Phys. Rev. D 44 (1991) 1731 [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Jacobson, Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D 48 (1993) 728 [hep-th/9303103] [INSPIRE].ADSGoogle Scholar
  7. [7]
    W.G. Unruh, Sonic analog of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D 51 (1995) 2827 [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    C. Barceló, S. Liberati and M. Visser, Analogue gravity, Living Rev. Rel. 14 (2011) 3 [gr-qc/0505065] [INSPIRE].Google Scholar
  9. [9]
    C. Barceló, L. Garay and G. Jannes, Sensitivity of Hawking radiation to superluminal dispersion relations, Phys. Rev. D 79 (2009) 024016 [arXiv:0807.4147] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev. D 64 (2001) 024028 [gr-qc/0007031] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    T. Jacobson, Trans Planckian redshifts and the substance of the space-time river, Prog. Theor. Phys. Suppl. 136 (1999) 1 [hep-th/0001085] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    S. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    J. Preskill, Do black holes destroy information?, presented at International symposium on black holes, membranes, wormholes and superstrings, Woodlands U.S.A. January 1992 [hep-th/9209058] [INSPIRE].
  15. [15]
    B. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, New cosmological constraints on primordial black holes, Phys. Rev. D 81 (2010) 104019 [arXiv:0912.5297] [INSPIRE].ADSGoogle Scholar
  16. [16]
    CMS collaboration, V. Khachatryan et al., Search for microscopic black hole signatures at the Large Hadron Collider, Phys. Lett. B 697 (2011) 434 [arXiv:1012.3375] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Corley, Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach, Phys. Rev. D 57 (1998) 6280 [hep-th/9710075] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    J. Macher and R. Parentani, Black/white hole radiation from dispersive theories, Phys. Rev. D 79 (2009) 124008 [arXiv:0903.2224] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Barceló, L. Garay and G. Jannes, The two faces of quantum sound, Phys. Rev. D 82 (2010) 044042 [arXiv:1006.0181] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Corley and T. Jacobson, Black hole lasers, Phys. Rev. D 59 (1999) 124011 [hep-th/9806203] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    S. Finazzi and R. Parentani, Black-hole lasers in Bose-Einstein condensates, New J. Phys. 12 (2010) 095015 [arXiv:1005.4024] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Coutant and R. Parentani, Black hole lasers, a mode analysis, Phys. Rev. D 81 (2010) 084042 [arXiv:0912.2755] [INSPIRE].ADSGoogle Scholar
  23. [23]
    U. Leonhardt and T.G. Philbin, Black hole lasers revisited, arXiv:0803.0669 [INSPIRE].
  24. [24]
    L. Garay, J. Anglin, J. Cirac and P. Zoller, Sonic black holes in dilute Bose-Einstein condensates, Phys. Rev. A 63 (2001) 023611 [gr-qc/0005131] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Barceló, A. Cano, L. Garay and G. Jannes, Stability analysis of sonic horizons in Bose-Einstein condensates, Phys. Rev. D 74 (2006) 024008 [gr-qc/0603089] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Barceló, S. Liberati, S. Sonego and M. Visser, Fate of gravitational collapse in semiclassical gravity, Phys. Rev. D 77 (2008) 044032 [arXiv:0712.1130] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Barceló, L. Garay and G. Jannes, Quantum non-gravity and stellar collapse, Found. Phys. 41 (2011)1532 [arXiv:1002.4651] [INSPIRE].ADSCrossRefMathSciNetMATHGoogle Scholar
  28. [28]
    P.O. Mazur and E. Mottola, Gravitational condensate stars: an alternative to black holes, gr-qc/0109035 [INSPIRE].
  29. [29]
    P.O. Mazur and E. Mottola, Gravitational vacuum condensate stars, Proc. Nat. Acad. Sci. 101 (2004) 9545 [gr-qc/0407075] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Chapline, E. Hohlfeld, R. Laughlin and D. Santiago, Quantum phase transitions and the breakdown of classical general relativity, Int. J. Mod. Phys. A 18 (2003) 3587 [gr-qc/0012094] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R.D. Sorkin, R.M. Wald and Z.J. Zhang, Entropy of selfgravitating radiation, Gen. Rel. Grav. 13 (1981) 1127 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    F. Pretorius, D. Vollick and W. Israel, An operational approach to black hole entropy, Phys. Rev. D 57 (1998) 6311 [gr-qc/9712085] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    G. Abreu and M. Visser, Tolman mass, generalized surface gravity and entropy bounds, Phys. Rev. Lett. 105 (2010) 041302 [arXiv:1005.1132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    G. Abreu, C. Barceló and M. Visser, Entropy bounds in terms of the w parameter, arXiv:1109.2710 [INSPIRE].
  35. [35]
    J.P. Lemos and O.B. Zaslavskii, Entropy of quasiblack holes, Phys. Rev. D 81 (2010) 064012 [arXiv:0904.1741] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    C. Barceló, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation does not require a trapped region, Phys. Rev. Lett. 97 (2006) 171301 [gr-qc/0607008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    C. Barceló, S. Liberati, S. Sonego and M. Visser, Minimal conditions for the existence of a Hawking-like flux, Phys. Rev. D 83 (2011) 041501 [arXiv:1011.5593] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Barceló, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation from evolving black holes and compact horizonless objects, JHEP 02 (2011) 003 [arXiv:1011.5911] [INSPIRE].ADSGoogle Scholar
  40. [40]
    T. Jacobson, S. Liberati and D. Mattingly, Lorentz violation at high energy: concepts, phenomena and astrophysical constraints, Annals Phys. 321 (2006) 150 [astro-ph/0505267] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  41. [41]
    L. Maccione, A.M. Taylor, D.M. Mattingly and S. Liberati, Planck-scale Lorentz violation constrained by ultra-high-energy cosmic rays, JCAP 04 (2009) 022 [arXiv:0902.1756] [INSPIRE].ADSGoogle Scholar
  42. [42]
    L. Garay, J. Anglin, J. Cirac and P. Zoller, Black holes in Bose-Einstein condensates, Phys. Rev. Lett. 85 (2000) 4643 [gr-qc/0002015] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Barceló, A. Cano, L. Garay and G. Jannes, Quasi-normal mode analysis in BEC acoustic black holes, Phys. Rev. D 75 (2007) 084024 [gr-qc/0701173] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Finazzi and R. Parentani, Spectral properties of acoustic black hole radiation: broadening the horizon, Phys. Rev. D 83 (2011) 084010 [arXiv:1012.1556] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • L. C. Barbado
    • 1
  • C. Barceló
    • 1
  • L. J. Garay
    • 2
    • 3
  • G. Jannes
    • 4
  1. 1.Instituto de Astrofísica de Andalucía (IAA — CSIC)GranadaSpain
  2. 2.Departamento de Física Teórica IIUniversidad Complutense de MadridMadridSpain
  3. 3.Instituto de Estructura de la Materia (IEM — CSIC)MadridSpain
  4. 4.Low Temperature LaboratoryAalto University School of ScienceAaltoFinland

Personalised recommendations