Journal of High Energy Physics

, 2011:107 | Cite as

Relevant deformations in open string field theory: a simple solution for lumps

Article

Abstract

We propose a remarkably simple solution of cubic open string field theory which describes inhomogeneous tachyon condensation. The solution is in one-to-one correspondence with the IR fixed point of the RG-flow generated in the two-dimensional worldsheet theory by integrating a relevant operator with mild enough OPE on the boundary. It is shown how the closed string overlap correctly captures the shift in the closed string one point function between the UV and the IR limits of the flow. Examples of lumps in non-compact and compact transverse directions are given.

Keywords

Tachyon Condensation String Field Theory 

References

  1. [1]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetMATHGoogle Scholar
  3. [3]
    Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    T. Erler and M. Schnabl, A simple analytic solution for tachyon condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    L. Rastelli and B. Zwiebach, Solving open string field theory with special projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with general projectors, hep-th/0611110 [INSPIRE].
  7. [7]
    E. Fuchs and M. Kroyter, On the validity of the solution of string field theory, JHEP 05 (2006) 006 [hep-th/0603195] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    T. Erler, Split string formalism and the closed string vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    T. Erler, Split string formalism and the closed string vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    T. Erler, Tachyon vacuum in cubic superstring field theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. Arroyo, Generating Erler-Schnabl-type solution for tachyon vacuum in cubic superstring field theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    S. Zeze, Tachyon potential in KBc subalgebra, Prog. Theor. Phys. 124 (2010) 567 [arXiv:1004.4351] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  13. [13]
    S. Zeze, Regularization of identity based solution in string field theory, JHEP 10 (2010) 070 [arXiv:1008.1104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    E. Arroyo, Comments on regularization of identity based solutions in string field theory, JHEP 11 (2010) 135 [arXiv:1009.0198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    B.-H. Lee, C. Park and D. Tolla, Marginal deformations as lower dimensional D-brane solutions in open string field theory, arXiv:0710.1342 [INSPIRE].
  20. [20]
    O.-K. Kwon, Marginally deformed rolling tachyon around the tachyon vacuum in open string field theory, Nucl. Phys. B 804 (2008) 1 [arXiv:0801.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    T. Erler, Marginal solutions for the superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E. Fuchs and M. Kroyter, Analytical solutions of open string field theory, Phys. Rept. 502 (2011) 89 [arXiv:0807.4722] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Schnabl, Algebraic solutions in open string field theoryA lightning review, arXiv:1004.4858 [INSPIRE].
  27. [27]
    L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L. Bonora, C. Maccaferri, R. Scherer Santos and D. Tolla, Ghost story. I. Wedge states in the oscillator formalism, JHEP 09 (2007) 061 [arXiv:0706.1025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    L. Bonora, C. Maccaferri, R. Scherer Santos and D. Tolla, Ghost story. II. The midpoint ghost vertex, JHEP 11 (2009) 075 [arXiv:0908.0055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    L. Bonora, C. Maccaferri and D. Tolla, Ghost story. III. Back to ghost number zero, JHEP 11 (2009) 086 [arXiv:0908.0056] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    I. Affleck and A.W. Ludwig, Universal nonintegerground state degeneracyin critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    J.A. Harvey, D. Kutasov and E.J. Martinec, On the relevance of tachyons, hep-th/0003101 [INSPIRE].
  34. [34]
    S. Elitzur, E. Rabinovici and G. Sarkissian, On least action D-branes, Nucl. Phys. B 541 (1999) 246 [hep-th/9807161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    N. Moeller, A. Sen and B. Zwiebach, D-branes as tachyon lumps in string field theory, JHEP 08 (2000) 039 [hep-th/0005036] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    P. Fendley, F. Lesage and H. Saleur, Solving 1D plasmas and 2D boundary problems using Jack polynomials and functional relations, J. Stat. Phys. 79 (1995) 799 [hep-th/9409176] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  37. [37]
    P. Fendley, H. Saleur and N. Warner, Exact solution of a massless scalar field with a relevant boundary interaction, Nucl. Phys. B 430 (1994) 577 [hep-th/9406125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    L. Rastelli, A. Sen and B. Zwiebach, Boundary CFT construction of D-branes in vacuum string field theory, JHEP 11 (2001) 045 [hep-th/0105168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    I. Ellwood, The closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    J.A. Harvey, S. Kachru, G.W. Moore and E. Silverstein, Tension is dimension, JHEP 03 (2000) 001 [hep-th/9909072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    E. Witten, Some computations in background independent off-shell string theory, Phys. Rev. D 47 (1993) 3405 [hep-th/9210065] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    D. Kutasov, M. Mariño and G.W. Moore, Some exact results on tachyon condensation in string field theory, JHEP 10 (2000) 045 [hep-th/0009148] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].
  48. [48]
    D. Gaiotto and L. Rastelli, Experimental string field theory, JHEP 08 (2003) 048 [hep-th/0211012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    M. Kroyter, On string fields and superstring field theories, JHEP 08 (2009) 044 [arXiv:0905.1170] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Kroyter, Comments on superstring field theory and its vacuum solution, JHEP 08 (2009) 048 [arXiv:0905.3501] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    M. Kroyter, Superstring field theory in the democratic picture, arXiv:0911.2962 [INSPIRE].
  52. [52]
    I.Y. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Tachyon solution in cubic Neveu-Schwarz string field theory, Theor. Math. Phys. 158 (2009) 320 [arXiv:0804.2017] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  53. [53]
    I. Arefeva and R. Gorbachev, On gauge equivalence of tachyon solutions in cubic Neveu-Schwarz string field theory, Theor. Math. Phys. 165 (2010) 1512 [arXiv:1004.5064] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    T. Erler, Exotic universal solutions in cubic superstring field theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    T. Erler and C. Maccaferri, Comments on lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    L. Bonora, S. Giaccari and D. Tolla, The energy of the analytic lump solution in SFT, JHEP 08 (2011) 158 [arXiv:1105.5926] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    L. Bonora, S. Giaccari and D. Tolla, Lump solutions in SFT. Complements, arXiv:1109.4336 [INSPIRE].
  58. [58]
    L. Bonora, S. Giaccari and D. Tolla, Analytic solutions for Dp-branes in SFT, arXiv:1106.3914 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.International School for Advanced Studies (SISSA)TriesteItaly
  2. 2.INFN — Sezione di TriesteTriesteItaly
  3. 3.International Solvay Institutes and Physique Théorique et MathématiqueUniversité Libre de BruxellesBruxellesBelgium
  4. 4.Department of Physics and University CollegeSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations