Journal of High Energy Physics

, 2011:83 | Cite as

Probing leptonic interactions of a family-nonuniversal Z′ boson

Article

Abstract

We explore a Z′ boson with family-nonuniversal couplings to charged leptons. The general effect of Z-Z′ mixing, of both kinetic and mass types, is included in the analysis. Adopting a model-independent approach, we perform a comprehensive study of constraints on the leptonic Z′ couplings from currently available experimental data on a number of flavor-conserving and flavor-changing transitions. Detailed comparisons are made to extract the most stringent bounds on the leptonic couplings. Such information is fed into predictions of various processes that may be experimentally probed in the near future.

Keywords

Beyond Standard Model Rare Decays 

References

  1. [1]
    D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  4. [4]
    D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. D 82 (2010) 032001 [arXiv:1005.2757] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. Lett. 105 (2010) 081801 [arXiv:1007.0395] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D0 collaboration, V.M. Abazov et al., Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb −1 of \( p\overline p \) collisions, Phys. Rev. D 84 (2011) 052007 [arXiv:1106.6308] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CDF collaboration, T. Aaltonen et al., Invariant mass distribution of jet pairs produced in association with a W boson in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 106 (2011) 171801 [arXiv:1104.0699] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D0 collaboration, V.M. Abazov et al., Bounds on an anomalous dijet resonance in W + jets production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 107 (2011) 011804 [arXiv:1106.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].ADSGoogle Scholar
  10. [10]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [INSPIRE].ADSGoogle Scholar
  11. [11]
    N.G. Deshpande, X.-G. He and G. Valencia, D0 dimuon asymmetry in \( {B_s} - {\overline B_s} \) mixing and constraints on new physics, Phys. Rev. D 82 (2010) 056013 [arXiv:1006.1682] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.K. Alok, S. Baek and D. London, Neutral gauge boson contributions to the dimuon charge asymmetry in B decays, JHEP 07 (2011) 111 [arXiv:1010.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Zbosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Yu, A Zmodel for the CDF dijet anomaly, Phys. Rev. D 83 (2011) 094028 [arXiv:1104.0243] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K. Cheung and J. Song, Baryonic Zexplanation for the CDF W jj excess, Phys. Rev. Lett. 106 (2011) 211803 [arXiv:1104.1375] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Ko, Y. Omura and C. Yu, Dijet resonance from leptophobic Zand light baryonic cold dark matter, arXiv:1104.4066 [INSPIRE].
  17. [17]
    P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An effective Z′, arXiv:1104.4127 [INSPIRE].
  18. [18]
    S. Chang, K.Y. Lee and J. Song, The CDF dijet excess and \( Z_{{cs}}^{\prime } \) coupled to the second generation quarks, arXiv:1104.4560 [INSPIRE].
  19. [19]
    F. del Aguila, J. de Blas, P. Langacker and M. Pérez-Victoria, Impact of extra particles on indirect Zlimits, Phys. Rev. D 84 (2011) 015015 [arXiv:1104.5512] [INSPIRE].ADSGoogle Scholar
  20. [20]
    Z. Liu, P. Nath and G. Peim, An explanation of the CDF dijet anomaly within a U(1)X Stueckelberg extension, Phys. Lett. B 701 (2011) 601 [arXiv:1105.4371] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J.L. Hewett and T.G. Rizzo, Dissecting the Wjj anomaly: diagnostic tests of a leptophobic Z′, [arXiv:1106.0294] [INSPIRE].
  22. [22]
    J. Fan, D. Krohn, P. Langacker and I. Yavin, A Higgsophilic s-channel Zand the CDF W + 2j anomaly, arXiv:1106.1682 [INSPIRE].
  23. [23]
    P. Ko, Y. Omura and C. Yu, Top forward-backward asymmetry and the CDF Wjj excess in leptophobic U(1)′ flavor models, arXiv:1108.0350 [INSPIRE].
  24. [24]
    E. Nardi, Z′, new fermions and flavor changing processes. Constraints on E 6 models from μ → eee, Phys. Rev. D 48 (1993) 1240 [hep-ph/9209223] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Bernabeu, E. Nardi and D. Tommasini, μ-e conversion in nuclei and Zphysics, Nucl. Phys. B 409 (1993) 69 [hep-ph/9306251] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y. Nir and D.J. Silverman, Z mediated flavor changing neutral currents and their implications for CP asymmetries in B0 decays, Phys. Rev. D 42 (1990) 1477 [INSPIRE].ADSGoogle Scholar
  27. [27]
    V.D. Barger, M.S. Berger and R.J. Phillips, Quark singlets: implications and constraints, Phys. Rev. D 52 (1995) 1663 [hep-ph/9503204] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M.B. Popovic and E.H. Simmons, Weak singlet fermions: models and constraints, Phys. Rev. D 62 (2000) 035002 [hep-ph/0001302] [INSPIRE].ADSGoogle Scholar
  29. [29]
    K.S. Babu, C.F. Kolda and J. March-Russell, Leptophobic U(1)’s and the R b-R c crisis, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z Zmixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T.G. Rizzo, Gauge kinetic mixing and leptophobic Zin E 6 and SO(10), Phys. Rev. D 59 (1999) 015020 [hep-ph/9806397] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K. Leroux and D. London, Flavor changing neutral currents and leptophobic Zgauge bosons, Phys. Lett. B 526 (2002) 97 [hep-ph/0111246] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Chaudhuri, S.-W. Chung, G. Hockney and J.D. Lykken, String consistency for unified model building, Nucl. Phys. B 456 (1995) 89 [hep-ph/9501361] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    G. Cleaver et al., Physics implications of flat directions in free fermionic superstring models. 1: Mass spectrum and couplings, Phys. Rev. D 59 (1999) 055005 [hep-ph/9807479] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Cvetič, G. Shiu and A.M. Uranga, Three family supersymmetric standard-like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 [hep-th/0107143] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Cvetič, G. Shiu and A.M. Uranga, Chiral four-dimensional N = 1 supersymmetric type IIA orientifolds from intersecting D6 branes, Nucl. Phys. B 615 (2001) 3 [hep-th/0107166] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Cvetič, P. Langacker and G. Shiu, Phenomenology of a three family standard like string model, Phys. Rev. D 66 (2002) 066004 [hep-ph/0205252] [INSPIRE].ADSGoogle Scholar
  38. [38]
    P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Zboson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].ADSGoogle Scholar
  39. [39]
    V. Barger, C.-W. Chiang, J. Jiang and P. Langacker, \( {B_s} - {\overline B_s} \) mixing in Zmodels with flavor-changing neutral currents, Phys. Lett. B 596 (2004) 229 [hep-ph/0405108] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. Barger, C.-W. Chiang, P. Langacker and H.-S. Lee, Solution to the B → πK puzzle in a flavor-changing Zmodel, Phys. Lett. B 598 (2004) 218 [hep-ph/0406126] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Arhrib, K. Cheung, C.-W. Chiang and T.-C. Yuan, Single top-quark production in flavor-changing Zmodels, Phys. Rev. D 73 (2006) 075015 [hep-ph/0602175] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K. Cheung, C.-W. Chiang, N.G. Deshpande and J. Jiang, Constraints on flavor-changing Zmodels by B s mixing, Zproduction and B s → μ + μ , Phys. Lett. B 652 (2007) 285 [hep-ph/0604223] [INSPIRE].ADSGoogle Scholar
  43. [43]
    X.-G. He and G. Valencia, \( {B_s} - {\overline B_s} \) mixing constraints on FCNC and a non-universal Z′, Phys. Rev. D 74 (2006) 013011 [hep-ph/0605202] [INSPIRE].ADSGoogle Scholar
  44. [44]
    X.-G. He and G. Valencia, \( D - \overline D \) mixing constraints on FCNC with a non-universal Z′, Phys. Lett. B 651 (2007) 135 [hep-ph/0703270] [INSPIRE].ADSGoogle Scholar
  45. [45]
    V. Barger et al., b → s transitions in family-dependent U(1)′ models, JHEP 12 (2009) 048 [arXiv:0906.3745] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    X.-G. He and G. Valencia, Ansatz for small FCNC with a non-universal Z′, Phys. Lett. B 680 (2009) 72 [arXiv:0907.4034] [INSPIRE].ADSGoogle Scholar
  47. [47]
    Q. Chang, X.-Q. Li and Y.-D. Yang, Family non-universal Zeffects on \( {\overline B_q} - {B_q} \) mixing, B → X s μ + μ and B s → μ + μ decays, JHEP 02 (2010) 082 [arXiv:0907.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C.-W. Chiang, N.G. Deshpande and J. Jiang, Flavor changing effects in family nonuniversal Zmodels, JHEP 08 (2006) 075 [hep-ph/0606122] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Heeck and W. Rodejohann, Gauged \( {L_{\mu }} - {L_{\tau }} \) symmetry at the electroweak scale, Phys. Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].ADSGoogle Scholar
  50. [50]
    BaBar collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ± → e ±γ and τ± → μ ±γ, Phys. Rev. Lett.104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Hayasaka et al., Search for lepton flavor violating tau decays into three leptons with 719 million produced τ +τ pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].ADSGoogle Scholar
  52. [52]
    BaBar collaboration, J. Lees et al., Limits on tau lepton-flavor violating decays in three charged leptons, Phys. Rev. D 81 (2010) 111101 [arXiv:1002.4550] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Lusiani, Search for lepton-flavor-violating tau decays at the B-factories, PoS (HQL 2010) 054 [arXiv:1012.3733] [INSPIRE].
  54. [54]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ + → e +γ, arXiv:1107.5547 [INSPIRE].
  55. [55]
    P. Langacker, The physics of heavy Zgauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Erler and P. Langacker, Electroweak model and constraints on new physics, in Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
  57. [57]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  58. [58]
    ALEPH, DELPHI, L3, OPAL and LEP Electroweak Working Group collaborations, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].
  59. [59]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    C.D. Carone and H. Murayama, Possible light U(1) gauge boson coupled to baryon number, Phys. Rev. Lett. 74 (1995) 3122 [hep-ph/9411256] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    E. Ma and D.P. Roy, Phenomenology of the \( B - 3{L_{\tau }} \) gauge boson, Phys. Rev. D 58 (1998) 095005 [hep-ph/9806210] [INSPIRE].ADSGoogle Scholar
  62. [62]
    L. Willmann et al., New bounds from searching for muonium to anti-muonium conversion, Phys. Rev. Lett. 82 (1999) 49 [hep-ex/9807011] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    OPAL collaboration, G. Abbiendi et al., Search for lepton flavor violation in e + e collisions at \( \sqrt {s} = 189\;GeV - 209\;GeV \), Phys. Lett. B 519 (2001) 23 [hep-ex/0109011] [INSPIRE].ADSGoogle Scholar
  64. [64]
    BaBar collaboration, B. Aubert et al., Search for the reactions e + e  → μ +τ and e + e  → e +τ, Phys. Rev. D 75 (2007) 031103 [hep-ex/0607044] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M.N. Achasov et al., Search for lepton flavor violation process e + e  → eμ in the energy region \( \sqrt {s} = 984 - 1060\;MeV \) and ϕ → eμ decay, Phys. Rev. D 81 (2010) 057102 [arXiv:0911.1232] [INSPIRE].ADSGoogle Scholar
  66. [66]
    X.-G. He, J. Tandean and G. Valencia, Penguin and box diagrams in unitary gauge, Eur. Phys. J. C 64 (2009) 681 [arXiv:0909.3638] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    J.P. Leveille, The second-order weak correction to (g-2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R. Foot and X.-G. He, Comment on ZZmixing in extended gauge theories, Phys. Lett. B 267 (1991) 509 [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Electroweak and dark matter constraints on a Zin models with a hidden valley, Nucl. Phys. B 827 (2010) 256 [arXiv:0903.1118] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Williams, C.P. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for Abelian gauge bosons in the MeV-TeV mass range, arXiv:1103.4556 [INSPIRE].
  72. [72]
    F. del Aguila, M. Masip and M. Pérez-Victoria, Physical parameters and renormalization of U(1)a × U(1)b models, Nucl. Phys. B 456 (1995) 531 [hep-ph/9507455] [INSPIRE].ADSGoogle Scholar
  73. [73]
    Y. Mambrini, The ZZkinetic mixing in the light of the recent direct and indirect dark matter searches, JCAP 07 (2011) 009 [arXiv:1104.4799] [INSPIRE].ADSGoogle Scholar
  74. [74]
    B. Körs and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069 [hep-ph/0503208] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics and Center for Mathematics and Theoretical PhysicsNational Central UniversityChungliTaiwan
  2. 2.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  3. 3.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan

Personalised recommendations