Advertisement

Journal of High Energy Physics

, 2011:78 | Cite as

W+W, WZ and ZZ production in the POWHEG BOX

  • Tom Melia
  • Paolo Nason
  • Raoul Röntsch
  • Giulia Zanderighi
Article

Abstract

We present an implementation of the vector boson pair production processes ZZ, W + W and WZ within the POWHEG framework, which is a method that allows the interfacing of NLO calculations to shower Monte Carlo programs. The implementation is built within the POWHEG BOX package. The Z/γ * interference, as well as singly resonant contributions, are properly included. We also considered interference terms arising from identical leptons in the final state. As a result, all contributions leading to the desired four-lepton system have been included in the calculation, with the sole exception of the interference between ZZ and W + W in the production of a pair of same-flavour, oppositely charged fermions and a pair of neutrinos, which we show to be fully negligible. Anomalous trilinear couplings can be also set in the program, and we give some examples of their effect at the LHC. We have made the relevant code available at the POWHEG BOX web site.

Keywords

NLO Computations Hadronic Colliders QCD 

References

  1. [1]
    D0 collaboration, V. Abazov et al., Measurement of the WW production cross section in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 94 (2005) 151801 [Erratum ibid. 100 (2008) 139901] [hep-ex/0410066] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D0 collaboration, V. Abazov et al., Production of WZ events in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) and limits on anomalous WWZ couplings, Phys. Rev. Lett. 95 (2005) 141802 [hep-ex/0504019] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    CDF collaboration, D. Acosta et al., Measurement of the W + W production cross section in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) using dilepton events, Phys. Rev. Lett. 94 (2005) 211801 [hep-ex/0501050] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D0 collaboration, V. Abazov et al., Measurement of the \( p\overline p \) → WZ + X cross-section at \( \sqrt {s} = 1.96\;TeV \) and limits on WWZ trilinear gauge couplings, Phys. Rev. D 76 (2007) 111104 [arXiv:0709.2917] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CDF collaboration, A. Abulencia et al., Observation of W Z production, Phys. Rev. Lett. 98 (2007) 161801 [hep-ex/0702027] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CDF collaboration, T. Aaltonen et al., First measurement of ZZ production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 100 (2008) 201801 [arXiv:0801.4806] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    CDF collaboration, T. Aaltonen et al., Measurement of the W + W production cross section and search for anomalous WW γ and WW Z couplings in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 104 (2010) 201801 [arXiv:0912.4500] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D0 collaboration, V. Abazov et al., Measurement of the WW production cross section with dilepton final states in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) and limits on anomalous trilinear gauge couplings, Phys. Rev. Lett. 103 (2009) 191801 [arXiv:0904.0673] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D0 collaboration, V.M. Abazov et al., Measurement of the ZZ production cross section in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. D 84 (2011) 011103 [arXiv:1104.3078] [INSPIRE].ADSGoogle Scholar
  10. [10]
    ATLAS collaboration, G. Aad et al., Measurement of the WW cross section in \( \sqrt {s} = 7\;TeV \) pp collisions with ATLAS, arXiv:1104.5225 [INSPIRE].
  11. [11]
    CMS collaboration, S. Chatrchyan et al., Measurement of W + W production and search for the Higgs boson in pp collisions at \( \sqrt {s} = TeV \), Phys. Lett. B 699 (2011) 25 [arXiv:1102.5429] [INSPIRE].ADSGoogle Scholar
  12. [12]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(αs ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    U. Baur, T. Han and J. Ohnemus, QCD corrections and nonstandard three vector boson couplings in W + W production at hadron colliders, Phys. Rev. D 53 (1996) 1098 [hep-ph/9507336] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.M. Campbell and R. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.M. Campbell, R. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp \to ZZ \to l\overline l l\prime \overline l \prime \), arXiv:0807.0024 [INSPIRE].
  23. [23]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    U. Baur and D. Zeppenfeld, Finite width effects and gauge invariance in radiative W productions and decay, Phys. Rev. Lett. 75 (1995) 1002 [hep-ph/9503344] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    S. Dittmaier and . Kramer, Michael, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].
  30. [30]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  36. [36]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Nason, Recent developments in POWHEG, PoS(RADCOR2009) 018 [arXiv:1001.2747] [INSPIRE].
  43. [43]
    D0 collaboration, V. Abazov et al., Measurement of trilinear gauge boson couplings from WW + WZ → lνjj events in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. D 80 (2009) 053012 [arXiv:0907.4398] [INSPIRE].ADSGoogle Scholar
  44. [44]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group collaboration, J. Alcaraz et al., A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].
  45. [45]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  46. [46]
    F. Petriello, Production of the Higgs and other EW Objects at the LHC, talk given at Physics at the LHC, June 6–11, Perugia, Italy (2011).Google Scholar
  47. [47]
    K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e  → W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    U. Baur and D. Zeppenfeld, Unitarity constraints on the electroweak three vector boson vertices, Phys. Lett. B 201 (1988) 383 [INSPIRE].ADSGoogle Scholar
  49. [49]
    U. Baur and D. Zeppenfeld, Probing the WW γ vertex at future hadron colliders, Nucl. Phys. B 308 (1988) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Heavy Flavor Group collaboration, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0212036 [INSPIRE].
  51. [51]
    H. Aihara et al., Anomalous gauge boson interactions, hep-ph/9503425 [INSPIRE].
  52. [52]
    L. D’Errico and P. Richardson, Next-to-Leading-Order Monte Carlo simulation of diphoton production in hadronic collisions, arXiv:1106.3939 [INSPIRE].
  53. [53]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Tom Melia
    • 1
  • Paolo Nason
    • 2
  • Raoul Röntsch
    • 1
  • Giulia Zanderighi
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK
  2. 2.INFN — Sezione di Milano BicoccaMilanoItaly

Personalised recommendations