# Physical theories, eternal inflation, and the quantum universe

- 275 Downloads
- 37 Citations

## Abstract

Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity.

In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the *entire* multiverse is described *purely* from the viewpoint of a single “observer,” who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is “gauge invariant,” i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity.

Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of “initial conditions” for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal “mega-multiverse,” in which an infinite sequence of multiverse productions occurs.

The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness paradox and the Boltzmann brain problem.

## Keywords

Cosmology of Theories beyond the SM Superstring Vacua dS vacua in string theory Models of Quantum Gravity## References

- [1]A.H. Guth and E.J. Weinberg,
*Could the universe have recovered from a slow first order phase transition?*,*Nucl. Phys.***B 212**(1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar - [2]A. Vilenkin,
*The birth of inflationary universes*,*Phys. Rev.***D 27**(1983) 2848 [INSPIRE].MathSciNetADSGoogle Scholar - [3]A.D. Linde,
*Eternally existing selfreproducing chaotic inflationary universe*,*Phys. Lett.***B 175**(1986) 395 [INSPIRE].ADSGoogle Scholar - [4]
- [5]R. Bousso and J. Polchinski,
*Quantization of four form fluxes and dynamical neutralization of the cosmological constant*,*JHEP***06**(2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [6]S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi,
*De Sitter vacua in string theory*,*Phys. Rev.***D 68**(2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar - [7]
- [8]M.R. Douglas,
*The statistics of string/M theory vacua*,*JHEP***05**(2003) 046 [hep-th/0303194] [INSPIRE].ADSCrossRefGoogle Scholar - [9]J.D. Barrow and F.J. Tipler,
*The anthropic cosmological principle*, Oxford University Press, Oxford U.K. (1986).Google Scholar - [10]C.J. Hogan,
*Why the universe is just so*,*Rev. Mod. Phys.***72**(2000) 1149 [astro-ph/9909295] [INSPIRE].ADSCrossRefGoogle Scholar - [11]L.J. Hall and Y. Nomura,
*Evidence for the multiverse in the standard model and beyond, Phys. Rev.***D 78**(2008) 035001 [arXiv:0712.2454] [INSPIRE].ADSGoogle Scholar - [12]S. Weinberg,
*Anthropic bound on the cosmological constant*,*Phys. Rev. Lett.***59**(1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar - [13]A.H. Guth,
*Inflation and eternal inflation*,*Phys. Rept.***333**(2000) 555 [astro-ph/0002156] [INSPIRE].ADSCrossRefGoogle Scholar - [14]A. Vilenkin,
*A measure of the multiverse*,*J. Phys.***A 40**(2007) 6777 [hep-th/0609193] [INSPIRE].MathSciNetADSGoogle Scholar - [15]S. Winitzki,
*Predictions in eternal inflation*,*Lect. Notes Phys.***738**(2008) 157 [gr-qc/0612164] [INSPIRE].ADSCrossRefGoogle Scholar - [16]A.D. Linde,
*Inflationary cosmology*,*Lect. Notes Phys.***738**(2008) 1 [arXiv:0705.0164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [17]L. Susskind, L. Thorlacius and J. Uglum,
*The stretched horizon and black hole complementarity*,*Phys. Rev.***D 48**(1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar - [18]L. Susskind,
*String theory and the principles of black hole complementarity*,*Phys. Rev. Lett.***71**(1993) 2367 [hep-th/9307168] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar - [19]C.R. Stephens, G. ’t Hooft and B.F. Whiting,
*Black hole evaporation without information loss*,*Class. Quant. Grav.***11**(1994) 621 [gr-qc/9310006] [INSPIRE]. - [20]
- [21]L. Susskind,
*The world as a hologram*,*J. Math. Phys.***36**(1995) 6377 [hep-th/9409089] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar - [22]R. Bousso,
*A covariant entropy conjecture*,*JHEP***07**(1999) 004 [hep-th/9905177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [23]R. Bousso,
*Joint group meeting*, Berkeley U.S.A. February 16 2011.Google Scholar - [24]R. Bousso, to appear.Google Scholar
- [25]B.S. DeWitt,
*Quantum theory of gravity. 1. The canonical theory*,*Phys. Rev.***160**(1967) 1113 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar - [26]L. Susskind,
*The cosmic landscape: string theory and the illusion of intelligent design*, chapter 11, Little, Brown and Company, New York U.S.A. (2005).Google Scholar - [27]B. Carter,
*The anthropic principle in cosmology, in Confrontation of cosmological theories with observational data*, M.S. Longair ed., Reidel, Dordrecht The Netherlands (1974), pg. 291.Google Scholar - [28]J. Garriga and A. Vilenkin,
*Prediction and explanation in the multiverse*,*Phys. Rev.***D 77**(2008) 043526 [arXiv:0711.2559] [INSPIRE].ADSGoogle Scholar - [29]J. Garriga, A.H. Guth and A. Vilenkin,
*Eternal inflation, bubble collisions and the persistence of memory*,*Phys. Rev.***D 76**(2007) 123512 [hep-th/0612242] [INSPIRE].ADSGoogle Scholar - [30]B. Freivogel, M. Kleban, A. Nicolis and K. Sigurdson,
*Eternal inflation, bubble collisions and the disintegration of the persistence of memory*,*JCAP***08**(2009) 036 [arXiv:0901.0007] [INSPIRE].ADSGoogle Scholar - [31]R. Bousso, B. Freivogel and I.-S. Yang,
*Properties of the scale factor measure*,*Phys. Rev.***D 79**(2009) 063513 [arXiv:0808.3770] [INSPIRE].MathSciNetADSGoogle Scholar - [32]A.D. Linde,
*Sinks in the landscape, Boltzmann brains and the cosmological constant problem*,*JCAP***01**(2007) 022 [hep-th/0611043] [INSPIRE].MathSciNetADSGoogle Scholar - [33]M. Noorbala and V. Vanchurin,
*Geocentric cosmology: a new look at the measure problem*, arXiv:1006.4148 [INSPIRE]. - [34]G. Dvali,
*Black holes and large-N species solution to the hierarchy problem*,*Fortsch. Phys.***58**(2010) 528 [arXiv:0706.2050] [INSPIRE].MathSciNetzbMATHCrossRefADSGoogle Scholar - [35]G. Dvali and C. Gomez,
*Quantum information and gravity cutoff in theories with species*,*Phys. Lett.***B 674**(2009) 303 [arXiv:0812.1940] [INSPIRE].MathSciNetADSGoogle Scholar - [36]D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum,
*Black hole complementarity versus locality*,*Phys. Rev.***D 52**(1995) 6997 [hep-th/9506138] [INSPIRE].MathSciNetADSGoogle Scholar - [37]N. Goheer, M. Kleban and L. Susskind,
*The trouble with de Sitter space*,*JHEP***07**(2003) 056 [hep-th/0212209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [38]T. Banks, W. Fischler and S. Paban,
*Recurrent nightmares? Measurement theory in de Sitter space*,*JHEP***12**(2002) 062 [hep-th/0210160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [39]
- [40]G. Gibbons and S. Hawking,
*Cosmological event horizons, thermodynamics and particle creation*,*Phys. Rev.***D 15**(1977) 2738 [INSPIRE].MathSciNetADSGoogle Scholar - [41]G. Gibbons and S. Hawking,
*Action integrals and partition functions in quantum gravity*,*Phys. Rev.***D 15**(1977) 2752 [INSPIRE].MathSciNetADSGoogle Scholar - [42]T. Jacobson,
*Thermodynamics of space-time: the Einstein equation of state*,*Phys. Rev. Lett.***75**(1995) 1260 [gr-qc/9504004] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar - [43]R.-G. Cai and S.P. Kim,
*First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe*,*JHEP***02**(2005) 050 [hep-th/0501055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [44]R.-G. Cai, L.-M. Cao and Y.-P. Hu,
*Hawking radiation of apparent horizon in a FRW universe*,*Class. Quant. Grav.***26**(2009) 155018 [arXiv:0809.1554] [INSPIRE].ADSCrossRefGoogle Scholar - [45]T. Banks and W. Fischler,
*M theory observables for cosmological space-times*, hep-th/0102077 [INSPIRE]. - [46]L. Dyson, J. Lindesay and L. Susskind,
*Is there really a de Sitter/CFT duality?*,*JHEP***08**(2002) 045 [hep-th/0202163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [47]
- [48]T. Jacobson and R. Parentani,
*Horizon entropy*,*Found. Phys.***33**(2003) 323 [gr-qc/0302099] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [49]L. Susskind and J. Lindesay,
*An introduction to black holes, information and the string theory revolution: the holographic universe*, World Scientific, Singapore (2005).zbMATHGoogle Scholar - [50]R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus,
*Geometric origin of coincidences and hierarchies in the landscape*,*Phys. Rev.***D 84**(2011) 083517 [arXiv:1012.2869] [INSPIRE].ADSGoogle Scholar - [51]R. Bousso,
*Holography in general space-times*,*JHEP***06**(1999) 028 [hep-th/9906022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [52]R. Bousso,
*The holographic principle*,*Rev. Mod. Phys.***74**(2002) 825 [hep-th/0203101] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar - [53]J.D. Bekenstein,
*Black holes and entropy*,*Phys. Rev.***D 7**(1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar - [54]J.D. Bekenstein,
*Generalized second law of thermodynamics in black hole physics*,*Phys. Rev.***D 9**(1974) 3292 [INSPIRE].ADSGoogle Scholar - [55]S. Hawking,
*Particle creation by black holes*,*Commun. Math. Phys.***43**(1975) 199 [*Erratum ibid*.**46**(1976) 206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [56]V.F. Mukhanov and G. Chibisov,
*Quantum fluctuation and nonsingular universe*(in Russian),*JETP Lett.***33**(1981) 532 [*Pisma Zh. Eksp. Teor. Fiz.***33**(1981) 549] [INSPIRE].ADSGoogle Scholar - [57]S. Hawking,
*The development of irregularities in a single bubble inflationary universe*,*Phys. Lett.***B 115**(1982) 295 [INSPIRE].ADSGoogle Scholar - [58]A.A. Starobinsky,
*Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations*,*Phys. Lett.***B 117**(1982) 175 [INSPIRE].ADSGoogle Scholar - [59]A.H. Guth and S. Pi,
*Fluctuations in the new inflationary universe*,*Phys. Rev. Lett.***49**(1982) 1110 [INSPIRE].ADSCrossRefGoogle Scholar - [60]J.M. Bardeen, P.J. Steinhardt and M.S. Turner,
*Spontaneous creation of almost scale-free density perturbations in an inflationary universe*,*Phys. Rev.***D 28**(1983) 679 [INSPIRE].ADSGoogle Scholar - [61]S. Hawking,
*Breakdown of predictability in gravitational collapse*,*Phys. Rev.***D 14**(1976) 2460 [INSPIRE].MathSciNetADSGoogle Scholar - [62]P.A. Dirac,
*Forms of relativistic dynamics*,*Rev. Mod. Phys.***21**(1949) 392 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar - [63]S. Weinberg,
*Dynamics at infinite momentum*,*Phys. Rev.***150**(1966) 1313 [INSPIRE].ADSCrossRefGoogle Scholar - [64]M. Burkardt,
*Light front quantization*,*Adv. Nucl. Phys.***23**(1996) 1 [hep-ph/9505259] [INSPIRE].CrossRefGoogle Scholar - [65]S.J. Brodsky, H.-C. Pauli and S.S. Pinsky,
*Quantum chromodynamics and other field theories on the light cone*,*Phys. Rept.***301**(1998) 299 [hep-ph/9705477] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [66]
- [67]S. Weinberg,
*The quantum theory of fields volume II*, chapter 19, Cambridge University Press, Cambridge U.K. (1996).Google Scholar - [68]M. Schlosshauer,
*Decoherence and the quantum-to-classical transition*, Springer, Berlin/Heidelberg Germany (2007).Google Scholar - [69]S. Weinberg,
*Cosmology*, chapter 10, Oxford University Press, New York U.S.A. (2008).Google Scholar - [70]J. Hartle and S. Hawking,
*Wave function of the universe*,*Phys. Rev.***D 28**(1983) 2960 [INSPIRE].MathSciNetADSGoogle Scholar - [71]A. Vilenkin,
*Quantum creation of universes*,*Phys. Rev.***D 30**(1984) 509 [INSPIRE].MathSciNetADSGoogle Scholar - [72]A. Vilenkin,
*Boundary conditions in quantum cosmology*,*Phys. Rev.***D 33**(1986) 3560 [INSPIRE].MathSciNetADSGoogle Scholar - [73]A.D. Linde,
*Quantum creation of the inflationary universe*,*Lett. Nuovo Cim.***39**(1984) 401 [INSPIRE].ADSCrossRefGoogle Scholar - [74]A.D. Linde,
*Quantum creation of an open inflationary universe*,*Phys. Rev.***D 58**(1998) 083514 [gr-qc/9802038] [INSPIRE].MathSciNetADSGoogle Scholar - [75]D.N.
*Page, Susskind’s challenge to the Hartle-Hawking no-boundary proposal and possible resolutions*,*JCAP***01**(2007) 004 [hep-th/0610199] [INSPIRE].ADSGoogle Scholar - [76]Y.B. Zel’dovich,
*Birth of the closed universe and the anthropic principle*,*Sov. Astron. Lett.***7**(1981) 322.ADSGoogle Scholar - [77]A. Vilenkin,
*Creation of universes from nothing*,*Phys. Lett.***B 117**(1982) 25 [INSPIRE].MathSciNetADSGoogle Scholar - [78]H. Everett,
*Relative state formulation of quantum mechanics*,*Rev. Mod. Phys.***29**(1957) 454 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [79]C.M. Caves and R. Schack,
*Properties of the frequency operator do not imply the quantum probability postulate*,*Annals Phys.***315**(2005) 123 [quant-ph/0409144].MathSciNetADSzbMATHCrossRefGoogle Scholar - [80]A. Aguirre, M. Tegmark and D. Layzer,
*Born in an infinite universe: a cosmological interpretation of quantum mechanics*, arXiv:1008.1066 [INSPIRE]. - [81]R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus,
*Eternal inflation predicts that time will end*,*Phys. Rev.***D 83**(2011) 023525 [arXiv:1009.4698] [INSPIRE].ADSGoogle Scholar - [82]M. Tegmark,
*What does inflation really predict?*,*JCAP***04**(2005) 001 [astro-ph/0410281] [INSPIRE].ADSGoogle Scholar - [83]A.D. Linde and A. Mezhlumian,
*Stationary universe*,*Phys. Lett.***B 307**(1993) 25 [gr-qc/9304015] [INSPIRE].ADSGoogle Scholar - [84]A.D. Linde, D.A. Linde and A. Mezhlumian,
*From the big bang theory to the theory of a stationary universe*,*Phys. Rev.***D 49**(1994) 1783 [gr-qc/9306035] [INSPIRE].ADSGoogle Scholar - [85]A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin,
*Predicting the cosmological constant with the scale-factor cutoff measure*,*Phys. Rev.***D 78**(2008) 063520 [arXiv:0805.2173] [INSPIRE].ADSGoogle Scholar - [86]R. Bousso,
*Holographic probabilities in eternal inflation*,*Phys. Rev. Lett.***97**(2006) 191302 [hep-th/0605263] [INSPIRE].ADSCrossRefGoogle Scholar - [87]R. Bousso and I.-S. Yang,
*Global–local duality in eternal inflation*,*Phys. Rev.***D 80**(2009) 124024 [arXiv:0904.2386] [INSPIRE].MathSciNetADSGoogle Scholar - [88]B. Feldstein, L.J. Hall and T. Watari,
*Density perturbations and the cosmological constant from inflationary landscapes*,*Phys. Rev.***D 72**(2005) 123506 [hep-th/0506235] [INSPIRE].ADSGoogle Scholar - [89]J. Garriga and A. Vilenkin,
*Anthropic prediction for Λ and the Q catastrophe*,*Prog. Theor. Phys. Suppl.***163**(2006) 245 [hep-th/0508005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [90]
- [91]D.N. Page,
*Is our universe likely to decay within 20 billion years?*,*Phys. Rev.***D 78**(2008) 063535 [hep-th/0610079] [INSPIRE].ADSGoogle Scholar - [92]R. Bousso and B. Freivogel,
*A paradox in the global description of the multiverse*,*JHEP***06**(2007) 018 [hep-th/0610132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [93]J. Garriga, D. Schwartz-Perlov, A. Vilenkin and S. Winitzki,
*Probabilities in the inflationary multiverse*,*JCAP***01**(2006) 017 [hep-th/0509184] [INSPIRE].ADSGoogle Scholar - [94]R. Easther, E.A. Lim and M.R. Martin,
*Counting pockets with world lines in eternal inflation*,*JCAP***03**(2006) 016 [astro-ph/0511233] [INSPIRE].MathSciNetADSGoogle Scholar - [95]A. De Simone et al.,
*Boltzmann brains and the scale-factor cutoff measure of the multiverse*,*Phys. Rev.***D 82**(2010) 063520 [arXiv:0808.3778] [INSPIRE].ADSGoogle Scholar - [96]B. Freivogel and M. Lippert,
*Evidence for a bound on the lifetime of de Sitter space*,*JHEP***12**(2008) 096 [arXiv:0807.1104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [97]L. Dyson, M. Kleban and L. Susskind,
*Disturbing implications of a cosmological constant*,*JHEP***10**(2002) 011 [hep-th/0208013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [98]R. Bousso, B. Freivogel and I.-S. Yang,
*Eternal inflation: the inside story*,*Phys. Rev.***D 74**(2006) 103516 [hep-th/0606114] [INSPIRE].MathSciNetADSGoogle Scholar - [99]R. Bousso,
*Complementarity in the multiverse*,*Phys. Rev.***D 79**(2009) 123524 [arXiv:0901.4806] [INSPIRE].MathSciNetADSGoogle Scholar - [100]T. Banks and N. Seiberg,
*Symmetries and strings in field theory and gravity*,*Phys. Rev.***D 83**(2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar - [101]M.C. Johnson and I.-S. Yang,
*Escaping the crunch: gravitational effects in classical transitions*,*Phys. Rev.***D 82**(2010) 065023 [arXiv:1005.3506] [INSPIRE].ADSGoogle Scholar - [102]S.R. Coleman and F. De Luccia,
*Gravitational effects on and of vacuum decay*,*Phys. Rev.***D 21**(1980) 3305 [INSPIRE].ADSGoogle Scholar - [103]S. Weinberg,
*Does gravitation resolve the ambiguity among supersymmetry vacua?*,*Phys. Rev. Lett.***48**(1982) 1776 [INSPIRE].ADSCrossRefGoogle Scholar - [104]S. Deser and C. Teitelboim,
*Supergravity has positive energy*,*Phys. Rev. Lett.***39**(1977) 249 [INSPIRE].ADSCrossRefGoogle Scholar - [105]A. Micu, E. Palti and G. Tasinato,
*Towards Minkowski vacua in type II string compactifications*,*JHEP***03**(2007) 104 [hep-th/0701173] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [106]J.J. Blanco-Pillado, R. Kallosh and A.D. Linde,
*Supersymmetry and stability of flux vacua*,*JHEP***05**(2006) 053 [hep-th/0511042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [107]D. Krefl and D. Lüst,
*On supersymmetric Minkowski vacua in IIB orientifolds*,*JHEP***06**(2006) 023 [hep-th/0603166] [INSPIRE].ADSCrossRefGoogle Scholar - [108]B. Freivogel, G.T. Horowitz and S. Shenker,
*Colliding with a crunching bubble*,*JHEP***05**(2007) 090 [hep-th/0703146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [109]S. Weinberg,
*The quantum theory of fields volume I*, chapter 8, Cambridge University Press, Cambridge U.K. (1995).Google Scholar - [110]
- [111]
- [112]B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh,
*A holographic framework for eternal inflation*,*Phys. Rev.***D 74**(2006) 086003 [hep-th/0606204] [INSPIRE].MathSciNetADSGoogle Scholar - [113]
- [114]Y. Sekino and L. Susskind,
*Census taking in the hat: FRW/CFT duality*,*Phys. Rev.***D 80**(2009) 083531 [arXiv:0908.3844] [INSPIRE].MathSciNetADSGoogle Scholar - [115]A. Borde, A.H. Guth and A. Vilenkin,
*Inflationary space-times are incompletein past directions*,*Phys. Rev. Lett.***90**(2003) 151301 [gr-qc/0110012] [INSPIRE].ADSCrossRefGoogle Scholar - [116]
- [117]R. Bousso, B. Freivogel and I.-S. Yang,
*Boltzmann babies in the proper time measure*,*Phys. Rev.***D 77**(2008) 103514 [arXiv:0712.3324] [INSPIRE].MathSciNetADSGoogle Scholar - [118]J. Garriga and A. Vilenkin,
*Recycling universe*,*Phys. Rev.***D 57**(1998) 2230 [astro-ph/9707292] [INSPIRE].ADSGoogle Scholar - [119]K.-M. Lee and E.J. Weinberg,
*Decay of the true vacuum in curved space-time*,*Phys. Rev.***D 36**(1987) 1088 [INSPIRE].ADSGoogle Scholar - [120]L. Susskind and L. Thorlacius,
*Gedanken experiments involving black holes*,*Phys. Rev.***D 49**(1994) 966 [hep-th/9308100] [INSPIRE].MathSciNetADSGoogle Scholar - [121]P. Hayden and J. Preskill,
*Black holes as mirrors: quantum information in random subsystems*,*JHEP***09**(2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [122]Y. Sekino and L. Susskind,
*Fast scramblers*,*JHEP***10**(2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar - [123]