Journal of High Energy Physics

, 2011:63 | Cite as

Physical theories, eternal inflation, and the quantum universe

  • Yasunori Nomura


Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity.

In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single “observer,” who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is “gauge invariant,” i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity.

Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of “initial conditions” for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal “mega-multiverse,” in which an infinite sequence of multiverse productions occurs.

The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness paradox and the Boltzmann brain problem.


Cosmology of Theories beyond the SM Superstring Vacua dS vacua in string theory Models of Quantum Gravity 


  1. [1]
    A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys. B 212 (1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Vilenkin, The birth of inflationary universes, Phys. Rev. D 27 (1983) 2848 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    A.D. Linde, Eternally existing selfreproducing chaotic inflationary universe, Phys. Lett. B 175 (1986) 395 [INSPIRE].ADSGoogle Scholar
  4. [4]
    A.D. Linde, Eternal chaotic inflation, Mod. Phys. Lett. A 1 (1986) 81 [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  8. [8]
    M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.D. Barrow and F.J. Tipler, The anthropic cosmological principle, Oxford University Press, Oxford U.K. (1986).Google Scholar
  10. [10]
    C.J. Hogan, Why the universe is just so, Rev. Mod. Phys. 72 (2000) 1149 [astro-ph/9909295] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L.J. Hall and Y. Nomura, Evidence for the multiverse in the standard model and beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A.H. Guth, Inflation and eternal inflation, Phys. Rept. 333 (2000) 555 [astro-ph/0002156] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Vilenkin, A measure of the multiverse, J. Phys. A 40 (2007) 6777 [hep-th/0609193] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    S. Winitzki, Predictions in eternal inflation, Lect. Notes Phys. 738 (2008) 157 [gr-qc/0612164] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.D. Linde, Inflationary cosmology, Lect. Notes Phys. 738 (2008) 1 [arXiv:0705.0164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    L. Susskind, String theory and the principles of black hole complementarity, Phys. Rev. Lett. 71 (1993) 2367 [hep-th/9307168] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. [19]
    C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [INSPIRE].
  20. [20]
    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
  21. [21]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. [22]
    R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    R. Bousso, Joint group meeting, Berkeley U.S.A. February 16 2011.Google Scholar
  24. [24]
    R. Bousso, to appear.Google Scholar
  25. [25]
    B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory, Phys. Rev. 160 (1967) 1113 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  26. [26]
    L. Susskind, The cosmic landscape: string theory and the illusion of intelligent design, chapter 11, Little, Brown and Company, New York U.S.A. (2005).Google Scholar
  27. [27]
    B. Carter, The anthropic principle in cosmology, in Confrontation of cosmological theories with observational data, M.S. Longair ed., Reidel, Dordrecht The Netherlands (1974), pg. 291.Google Scholar
  28. [28]
    J. Garriga and A. Vilenkin, Prediction and explanation in the multiverse, Phys. Rev. D 77 (2008) 043526 [arXiv:0711.2559] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Garriga, A.H. Guth and A. Vilenkin, Eternal inflation, bubble collisions and the persistence of memory, Phys. Rev. D 76 (2007) 123512 [hep-th/0612242] [INSPIRE].ADSGoogle Scholar
  30. [30]
    B. Freivogel, M. Kleban, A. Nicolis and K. Sigurdson, Eternal inflation, bubble collisions and the disintegration of the persistence of memory, JCAP 08 (2009) 036 [arXiv:0901.0007] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R. Bousso, B. Freivogel and I.-S. Yang, Properties of the scale factor measure, Phys. Rev. D 79 (2009) 063513 [arXiv:0808.3770] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    A.D. Linde, Sinks in the landscape, Boltzmann brains and the cosmological constant problem, JCAP 01 (2007) 022 [hep-th/0611043] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    M. Noorbala and V. Vanchurin, Geocentric cosmology: a new look at the measure problem, arXiv:1006.4148 [INSPIRE].
  34. [34]
    G. Dvali, Black holes and large-N species solution to the hierarchy problem, Fortsch. Phys. 58 (2010) 528 [arXiv:0706.2050] [INSPIRE].MathSciNetzbMATHCrossRefADSGoogle Scholar
  35. [35]
    G. Dvali and C. Gomez, Quantum information and gravity cutoff in theories with species, Phys. Lett. B 674 (2009) 303 [arXiv:0812.1940] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    T. Banks, W. Fischler and S. Paban, Recurrent nightmares? Measurement theory in de Sitter space, JHEP 12 (2002) 062 [hep-th/0210160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  40. [40]
    G. Gibbons and S. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. [43]
    R.-G. Cai and S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP 02 (2005) 050 [hep-th/0501055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R.-G. Cai, L.-M. Cao and Y.-P. Hu, Hawking radiation of apparent horizon in a FRW universe, Class. Quant. Grav. 26 (2009) 155018 [arXiv:0809.1554] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Banks and W. Fischler, M theory observables for cosmological space-times, hep-th/0102077 [INSPIRE].
  46. [46]
    L. Dyson, J. Lindesay and L. Susskind, Is there really a de Sitter/CFT duality?, JHEP 08 (2002) 045 [hep-th/0202163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    L. Susskind, Twenty years of debate with Stephen, hep-th/0204027 [INSPIRE].
  48. [48]
    T. Jacobson and R. Parentani, Horizon entropy, Found. Phys. 33 (2003) 323 [gr-qc/0302099] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  49. [49]
    L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: the holographic universe, World Scientific, Singapore (2005).zbMATHGoogle Scholar
  50. [50]
    R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus, Geometric origin of coincidences and hierarchies in the landscape, Phys. Rev. D 84 (2011) 083517 [arXiv:1012.2869] [INSPIRE].ADSGoogle Scholar
  51. [51]
    R. Bousso, Holography in general space-times, JHEP 06 (1999) 028 [hep-th/9906022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [53]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    V.F. Mukhanov and G. Chibisov, Quantum fluctuation and nonsingular universe (in Russian), JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].ADSGoogle Scholar
  57. [57]
    S. Hawking, The development of irregularities in a single bubble inflationary universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].ADSGoogle Scholar
  58. [58]
    A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].ADSGoogle Scholar
  59. [59]
    A.H. Guth and S. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    P.A. Dirac, Forms of relativistic dynamics, Rev. Mod. Phys. 21 (1949) 392 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  63. [63]
    S. Weinberg, Dynamics at infinite momentum, Phys. Rev. 150 (1966) 1313 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Burkardt, Light front quantization, Adv. Nucl. Phys. 23 (1996) 1 [hep-ph/9505259] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    T. Heinzl, Light cone dynamics of particles and fields, hep-th/9812190 [INSPIRE].
  67. [67]
    S. Weinberg, The quantum theory of fields volume II, chapter 19, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  68. [68]
    M. Schlosshauer, Decoherence and the quantum-to-classical transition, Springer, Berlin/Heidelberg Germany (2007).Google Scholar
  69. [69]
    S. Weinberg, Cosmology, chapter 10, Oxford University Press, New York U.S.A. (2008).Google Scholar
  70. [70]
    J. Hartle and S. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].MathSciNetADSGoogle Scholar
  71. [71]
    A. Vilenkin, Quantum creation of universes, Phys. Rev. D 30 (1984) 509 [INSPIRE].MathSciNetADSGoogle Scholar
  72. [72]
    A. Vilenkin, Boundary conditions in quantum cosmology, Phys. Rev. D 33 (1986) 3560 [INSPIRE].MathSciNetADSGoogle Scholar
  73. [73]
    A.D. Linde, Quantum creation of the inflationary universe, Lett. Nuovo Cim. 39 (1984) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A.D. Linde, Quantum creation of an open inflationary universe, Phys. Rev. D 58 (1998) 083514 [gr-qc/9802038] [INSPIRE].MathSciNetADSGoogle Scholar
  75. [75]
    D.N. Page, Susskind’s challenge to the Hartle-Hawking no-boundary proposal and possible resolutions, JCAP 01 (2007) 004 [hep-th/0610199] [INSPIRE].ADSGoogle Scholar
  76. [76]
    Y.B. Zel’dovich, Birth of the closed universe and the anthropic principle, Sov. Astron. Lett. 7 (1981) 322.ADSGoogle Scholar
  77. [77]
    A. Vilenkin, Creation of universes from nothing, Phys. Lett. B 117 (1982) 25 [INSPIRE].MathSciNetADSGoogle Scholar
  78. [78]
    H. Everett, Relative state formulation of quantum mechanics, Rev. Mod. Phys. 29 (1957) 454 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    C.M. Caves and R. Schack, Properties of the frequency operator do not imply the quantum probability postulate, Annals Phys. 315 (2005) 123 [quant-ph/0409144].MathSciNetADSzbMATHCrossRefGoogle Scholar
  80. [80]
    A. Aguirre, M. Tegmark and D. Layzer, Born in an infinite universe: a cosmological interpretation of quantum mechanics, arXiv:1008.1066 [INSPIRE].
  81. [81]
    R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus, Eternal inflation predicts that time will end, Phys. Rev. D 83 (2011) 023525 [arXiv:1009.4698] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Tegmark, What does inflation really predict?, JCAP 04 (2005) 001 [astro-ph/0410281] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A.D. Linde and A. Mezhlumian, Stationary universe, Phys. Lett. B 307 (1993) 25 [gr-qc/9304015] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A.D. Linde, D.A. Linde and A. Mezhlumian, From the big bang theory to the theory of a stationary universe, Phys. Rev. D 49 (1994) 1783 [gr-qc/9306035] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin, Predicting the cosmological constant with the scale-factor cutoff measure, Phys. Rev. D 78 (2008) 063520 [arXiv:0805.2173] [INSPIRE].ADSGoogle Scholar
  86. [86]
    R. Bousso, Holographic probabilities in eternal inflation, Phys. Rev. Lett. 97 (2006) 191302 [hep-th/0605263] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    R. Bousso and I.-S. Yang, Global–local duality in eternal inflation, Phys. Rev. D 80 (2009) 124024 [arXiv:0904.2386] [INSPIRE].MathSciNetADSGoogle Scholar
  88. [88]
    B. Feldstein, L.J. Hall and T. Watari, Density perturbations and the cosmological constant from inflationary landscapes, Phys. Rev. D 72 (2005) 123506 [hep-th/0506235] [INSPIRE].ADSGoogle Scholar
  89. [89]
    J. Garriga and A. Vilenkin, Anthropic prediction for Λ and the Q catastrophe, Prog. Theor. Phys. Suppl. 163 (2006) 245 [hep-th/0508005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    D.N. Page, The Born rule dies, JCAP 07 (2009) 008 [arXiv:0903.4888] [INSPIRE].ADSGoogle Scholar
  91. [91]
    D.N. Page, Is our universe likely to decay within 20 billion years?, Phys. Rev. D 78 (2008) 063535 [hep-th/0610079] [INSPIRE].ADSGoogle Scholar
  92. [92]
    R. Bousso and B. Freivogel, A paradox in the global description of the multiverse, JHEP 06 (2007) 018 [hep-th/0610132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  93. [93]
    J. Garriga, D. Schwartz-Perlov, A. Vilenkin and S. Winitzki, Probabilities in the inflationary multiverse, JCAP 01 (2006) 017 [hep-th/0509184] [INSPIRE].ADSGoogle Scholar
  94. [94]
    R. Easther, E.A. Lim and M.R. Martin, Counting pockets with world lines in eternal inflation, JCAP 03 (2006) 016 [astro-ph/0511233] [INSPIRE].MathSciNetADSGoogle Scholar
  95. [95]
    A. De Simone et al., Boltzmann brains and the scale-factor cutoff measure of the multiverse, Phys. Rev. D 82 (2010) 063520 [arXiv:0808.3778] [INSPIRE].ADSGoogle Scholar
  96. [96]
    B. Freivogel and M. Lippert, Evidence for a bound on the lifetime of de Sitter space, JHEP 12 (2008) 096 [arXiv:0807.1104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  97. [97]
    L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant, JHEP 10 (2002) 011 [hep-th/0208013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  98. [98]
    R. Bousso, B. Freivogel and I.-S. Yang, Eternal inflation: the inside story, Phys. Rev. D 74 (2006) 103516 [hep-th/0606114] [INSPIRE].MathSciNetADSGoogle Scholar
  99. [99]
    R. Bousso, Complementarity in the multiverse, Phys. Rev. D 79 (2009) 123524 [arXiv:0901.4806] [INSPIRE].MathSciNetADSGoogle Scholar
  100. [100]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  101. [101]
    M.C. Johnson and I.-S. Yang, Escaping the crunch: gravitational effects in classical transitions, Phys. Rev. D 82 (2010) 065023 [arXiv:1005.3506] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSGoogle Scholar
  103. [103]
    S. Weinberg, Does gravitation resolve the ambiguity among supersymmetry vacua?, Phys. Rev. Lett. 48 (1982) 1776 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S. Deser and C. Teitelboim, Supergravity has positive energy, Phys. Rev. Lett. 39 (1977) 249 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    A. Micu, E. Palti and G. Tasinato, Towards Minkowski vacua in type II string compactifications, JHEP 03 (2007) 104 [hep-th/0701173] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  106. [106]
    J.J. Blanco-Pillado, R. Kallosh and A.D. Linde, Supersymmetry and stability of flux vacua, JHEP 05 (2006) 053 [hep-th/0511042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    D. Krefl and D. Lüst, On supersymmetric Minkowski vacua in IIB orientifolds, JHEP 06 (2006) 023 [hep-th/0603166] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    B. Freivogel, G.T. Horowitz and S. Shenker, Colliding with a crunching bubble, JHEP 05 (2007) 090 [hep-th/0703146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  109. [109]
    S. Weinberg, The quantum theory of fields volume I, chapter 8, Cambridge University Press, Cambridge U.K. (1995).Google Scholar
  110. [110]
    J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].
  111. [111]
    D. Harlow and L. Susskind, Crunches, hats and a conjecture, arXiv:1012.5302 [INSPIRE].
  112. [112]
    B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].MathSciNetADSGoogle Scholar
  113. [113]
    L. Susskind, The census taker’s hat, arXiv:0710.1129 [INSPIRE].
  114. [114]
    Y. Sekino and L. Susskind, Census taking in the hat: FRW/CFT duality, Phys. Rev. D 80 (2009) 083531 [arXiv:0908.3844] [INSPIRE].MathSciNetADSGoogle Scholar
  115. [115]
    A. Borde, A.H. Guth and A. Vilenkin, Inflationary space-times are incompletein past directions, Phys. Rev. Lett. 90 (2003) 151301 [gr-qc/0110012] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    A. Aguirre, Eternal inflation, past and future, arXiv:0712.0571 [INSPIRE].
  117. [117]
    R. Bousso, B. Freivogel and I.-S. Yang, Boltzmann babies in the proper time measure, Phys. Rev. D 77 (2008) 103514 [arXiv:0712.3324] [INSPIRE].MathSciNetADSGoogle Scholar
  118. [118]
    J. Garriga and A. Vilenkin, Recycling universe, Phys. Rev. D 57 (1998) 2230 [astro-ph/9707292] [INSPIRE].ADSGoogle Scholar
  119. [119]
    K.-M. Lee and E.J. Weinberg, Decay of the true vacuum in curved space-time, Phys. Rev. D 36 (1987) 1088 [INSPIRE].ADSGoogle Scholar
  120. [120]
    L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].MathSciNetADSGoogle Scholar
  121. [121]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  122. [122]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Berkeley Center for Theoretical Physics, Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Theoretical Physics Group, Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations