Journal of High Energy Physics

, 2011:50 | Cite as

Searches for lepton flavour violation at a linear collider

Open Access
Article

Abstract

We investigate the prospects for detection of lepton flavour violation in spar-ticle production and decays at a Linear Collider (LC), in models guided by neutrino os-cillation data. We consider both slepton pair production and sleptons arising from the cascade decays of non-leptonic sparticles. We study the expected signals when lepton-flavour-violating (LFV) interactions are induced by renormalization effects in the Con-strained Minimal Supersymmetric extension of the Standard Model (CMSSM), focusing on the subset of the supersymmetric parameter space that also leads to cosmologically interesting values of the relic neutralino LSP density. Emphasis is given to the comple-mentarity between the LC, which is sensitive to mixing in both the left and right slepton sectors, and the LHC, which is sensitive primarily to mixing in the right sector. We also emphasize the complementarity between searches for rare LFV processes at the LC and in low-energy experiments.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    Super-Kamiokande Collaboration collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Super-Kamiokande Collaboration collaboration, Y. Fukuda et al., Constraints on neutrino oscillation parameters from the measurement of day night solar neutrino fluxes at super-kamiokande, Phys. Rev. Lett. 82 (1999) 1810 [hep-ex/9812009] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Super-Kamiokande Collaboration collaboration, Y. Fukuda et al., Measurement of the solar neutrino energy spectrum using neutrino electron scattering, Phys. Rev. Lett. 82 (1999) 2430 [hep-ex/9812011] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    SNO Collaboration collaboration, Q. Ahmad et al., Measurement of the rate of ν/e + d → p + p + e interactions produced by B-8 solar neutrinos at the Sudbury neutrino observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    KamLAND Collaboration collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    KamLAND Collaboration collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K2K Collaboration collaboration, M. Ahn et al., Indications of neutrino oscillation in a 250 km long baseline experiment, Phys. Rev. Lett. 90 (2003) 041801 [hep-ex/0212007] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    MINOS Collaboration collaboration, D. Michael et al., Observation of muon neutrino disappearance with the minos detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Hisano, D. Nomura and T. Yanagida, Atmospheric neutrino oscillation and large lepton flavor violation in the SUSY SU(5) GUT, Phys. Lett. B 437 (1998) 351 [hep-ph/9711348] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Buchmüller, D. Delepine and F. Vissani, Neutrino mixing and the pattern of supersymmetry breaking, Phys. Lett. B 459 (1999) 171 [hep-ph/9904219] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Gomez, G. Leontaris, S. Lola and J. Vergados, U(1) textures and lepton flavor violation, Phys. Rev. D 59 (1999) 116009 [hep-ph/9810291] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.R. Ellis, M. Gomez, G. Leontaris, S. Lola and D.V. Nanopoulos, Charged lepton flavor violation in the light of the super-kamiokande data, Eur. Phys. J. C 14 (2000) 319 [hep-ph/9911459] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W. Buchmüller, D. Delepine and L.T. Handoko, Neutrino mixing and flavor changing processes, Nucl. Phys. B 576 (2000) 445 [hep-ph/9912317] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.L. Feng, Y. Nir and Y. Shadmi, Neutrino parameters, abelian flavor symmetries and charged lepton flavor violation, Phys. Rev. D 61 (2000) 113005 [hep-ph/9911370] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Sato and K. Tobe, Neutrino masses and lepton flavor violation in supersymmetric models with lopsided Froggatt-Nielsen charges, Phys. Rev. D 63 (2001) 116010 [hep-ph/0012333] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Hisano and K. Tobe, Neutrino masses, muon g-2 and lepton flavor violation in the supersymmetric seesaw model, Phys. Lett. B 510 (2001) 197 [hep-ph/0102315] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Baek, T. Goto, Y. Okada and K.-i. Okumura, Muon anomalous magnetic moment, lepton flavor violation and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Lavignac, I. Masina and C.A. Savoy, Tau → μ γ and μ → e gamma as probes of neutrino mass models, Phys. Lett. B 520 (2001) 269 [hep-ph/0106245] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Carvalho, J.R. Ellis, M. Gomez and S. Lola, Charged lepton flavor violation in the CMSSM in view of the muon anomalous magnetic moment, Phys. Lett. B 515 (2001) 323 [hep-ph/0103256] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Blazek and S. King, Muon anomalous magnetic moment and τ → μγ in a realistic string inspired model of neutrino masses, Phys. Lett. B 518 (2001) 109 [hep-ph/0105005] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Cannoni, S. Kolb and O. Panella, Lepton flavor violation in e +− e → l +− e (l = μ, τ ) induced by R conserving supersymmetry, Phys. Rev. D 68 (2003) 096002 [hep-ph/0306170] [INSPIRE].ADSGoogle Scholar
  25. [25]
    N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Arkani-Hamed, J.L. Feng, L.J. Hall and H.-C. Cheng, CP violation from slepton oscillations at the LHC and NLC, Nucl. Phys. B 505 (1997) 3 [hep-ph/9704205] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Hisano, M.M. Nojiri, Y. Shimizu and M. Tanaka, Lepton flavor violation in the left-handed slepton production at future lepton colliders, Phys. Rev. D 60 (1999) 055008 [hep-ph/9808410] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Guchait, J. Kalinowski and P. Roy, Supersymmetric lepton flavor violation in a linear collider: the role of charginos, Eur. Phys. J. C 21 (2001) 163 [hep-ph/0103161] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Deppisch, J. Kalinowski, H. Pas, A. Redelbach and R. Ruckl, Supersymmetric lepton flavor violation at the LHC and LC, hep-ph/0401243 [INSPIRE].
  30. [30]
    F. Deppisch, H. Pas, A. Redelbach, R. Ruckl and Y. Shimizu, The SUSY seesaw model and lepton flavor violation at a future electron positron linear collider, Phys. Rev. D 69 (2004) 054014 [hep-ph/0310053] [INSPIRE].ADSGoogle Scholar
  31. [31]
    N. Krasnikov, Search for flavor lepton number violation in slepton decays at LHC, JETP Lett. 65 (1997) 148 [hep-ph/9611282] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Bityukov and N. Krasnikov, The search for charged sleptons and flavor lepton number violation at LHC (CMS), hep-ph/9806504 [INSPIRE].
  33. [33]
    K. Agashe and M. Graesser, Signals of supersymmetric lepton flavor violation at the CERN LHC, Phys. Rev. D 61 (2000) 075008 [hep-ph/9904422] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Hisano, R. Kitano and M.M. Nojiri, Slepton oscillation at large hadron collider, Phys. Rev. D 65 (2002) 116002 [hep-ph/0202129] [INSPIRE].ADSGoogle Scholar
  35. [35]
    I. Hinchliffe and F. Paige, Lepton flavor violation at the CERN LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Carvalho, J.R. Ellis, M. Gomez, S. Lola and J. Romao, Tau flavor violation in sparticle decays at the LHC, Phys. Lett. B 618 (2005) 162 [hep-ph/0206148] [INSPIRE].ADSGoogle Scholar
  37. [37]
    E. Carquın, J. Ellis, M. Gómez, S. Lola and J. Rodrìguez-Quintero, Search for tau flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    LEP Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration Collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS Collaboration collaboration, V. Khachatryan et al., Search for supersymmetry in PP collisions at 7TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  40. [40]
    ATLAS Collaboration collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7TeV{ }pp \) , Phys. Rev. Lett. 106 (2011)131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    ATLAS Collaboration collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\,TeV \) proton-proton collisions, Phys. Lett. B 701 (2011)186 [arXiv:1102.5290] [INSPIRE].ADSGoogle Scholar
  42. [42]
    O. Buchmueller, R. Cavanaugh, D. Colling, A. De Roeck, M. Dolan, et al., Supersymmetry and dark matter in light of LHC 2010 and XENON100 data, Eur. Phys. J. C 71 (2011) 1722 [arXiv:1106.2529] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    WMAP Collaboration collaboration, E. Komatsu et al., Seven-Year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
  44. [44]
    J. Kalinowski, Supersymmetric lepton flavor violation at e + e linear colliders, Acta Phys. Polon. B 32 (2001) 3755 [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Gomez, S. Lola, P. Naranjo and J. Rodriguez-Quintero, WMAP dark matter constraints on Yukawa unification with massive neutrinos, JHEP 04 (2009) 043 [arXiv:0901.4013] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum-ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases, Phys. Rev. D 72 (2005) 095008 [hep-ph/0506243] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Tevatron Electroweak Working Group and CDF and D0 Collaboration collaboration, A combination of CDF and D0 results on the mass of the top quark, arXiv:0803.1683 [INSPIRE].
  49. [49]
    M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, Sensitivity of supersymmetric dark matter to the B quark mass, Phys. Rev. D 70 (2004) 035014 [hep-ph/0404025] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. Bélanger et al., MicrOMEGAs, http://lapth.in2p3.fr/micromegas/.
  51. [51]
    A. Pukhov et al., CalcHEP — a package for calculation of Feynman diagrams and integration over multi-particle phase space, http://theory.sinp.msu.ru/pukhov/calchep.html.
  52. [52]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  53. [53]
    MEG Collaboration collaboration, J. Adam et al., New limit on the lepton-flavourviolating decay μ + → e + γ, arXiv:1107.5547 [INSPIRE].
  54. [54]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G G 37 (2010) 075021 [http://pdg.lbl.gov/] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S. Vempati, et al., Soft SUSY breaking grand unification: leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • E. Carquín
    • 1
  • J. Ellis
    • 2
    • 3
  • M. E. Gómez
    • 4
  • S. Lola
    • 2
    • 5
  1. 1.Instituto de Estudios Avanzados en Ciencias e Ingeniera y Centro Cientfico-Tecnolgico de Valparaso, Physics DepartmentTechnical University Federico Santa MaraValparasoChile
  2. 2.Theory Division, Physics DepartmentCERNGeneva 23Switzerland
  3. 3.Theoretical Particle Physics and Cosmology Group, Department of PhysicsKing’s College LondonLondonUK
  4. 4.Department of Applied PhysicsUniversity of HuelvaHuelvaSpain
  5. 5.Department of PhysicsUniversity of PatrasPatrasGreece

Personalised recommendations