Advertisement

Journal of High Energy Physics

, 2011:24 | Cite as

Chronology protection in stationary 3D spacetimes

  • Joris Raeymaekers
Article

Abstract

We study chronology protection in stationary, rotationally symmetric space-times in 2 + 1 dimensional gravity, focusing especially on the case of negative cosmological constant. We show that in such spacetimes closed timelike curves must either exist all the way to the boundary or, alternatively, the matter stress tensor must violate the null energy condition in the bulk. We also show that the matter in the closed timelike curve region gives a negative contribution to the conformal weight from the point of view of the dual conformal field theory. We illustrate these properties in a class of examples involving rotating dust in antide Sitter space, and comment on the use of the AdS/CFT correspondence to study chronology protection.

Keywords

AdS-CFT Correspondence Classical Theories of Gravity 

References

  1. [1]
    S. Hawking, The chronology protection conjecture, Phys. Rev. D 46 (1992) 603 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    K.S. Thorne, Closed timelike curves, prepared for 13th conference on General Relativity and Gravitation (GR13), June 29–July 4, Cordoba, Argentina (1992).Google Scholar
  3. [3]
    M. Visser, The quantum physics of chronology protection, gr-qc/0204022 [INSPIRE].
  4. [4]
    B.S. Kay, M.J. Radzikowski and R.M. Wald, Quantum field theory on space-times with a compactly generated Cauchy horizon, Commun. Math. Phys. 183 (1997) 533 [gr-qc/9603012] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    L. Dyson, Chronology protection in string theory, JHEP 03 (2004) 024 [hep-th/0302052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    N. Drukker, B. Fiol and J. Simon, Gödel’s universe in a supertube shroud, Phys. Rev. Lett. 91 (2003)231601 [hep-th/0306057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    E.G. Gimon and P. Hořava, Over-rotating black holes, Gödel holography and the hypertube, hep-th/0405019 [INSPIRE].
  8. [8]
    M.S. Costa, C.A. Herdeiro, J. Penedones and N. Sousa, Hagedorn transition and chronology protection in string theory, Nucl. Phys. B 728 (2005) 148 [hep-th/0504102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J. Raeymaekers, D. Van den Bleeken and B. Vercnocke, Chronology protection and the stringy exclusion principle, JHEP 04 (2011) 037 [arXiv:1011.5693] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].
  11. [11]
    C. Herdeiro, Special properties of five-dimensional BPS rotating black holes, Nucl. Phys. B 582 (2000) 363 [hep-th/0003063] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Caldarelli, D. Klemm and W. Sabra, Causality violation and naked time machines in AdS 5, JHEP 05 (2001) 014 [hep-th/0103133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M.M. Caldarelli, D. Klemm and P.J. Silva, Chronology protection in Anti-de Sitter, Class. Quant. Grav. 22 (2005) 3461 [hep-th/0411203] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    A. Dabholkar, N. Iizuka, A. Iqubal and M. Shigemori, Precision microstate counting of small black rings, Phys. Rev. Lett. 96 (2006) 071601 [hep-th/0511120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Raeymaekers, D. Van den Bleeken and B. Vercnocke, Relating chronology protection and unitarity through holography, JHEP 04 (2010) 021 [arXiv:0911.3893] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W.J. van Stockum, The gravitational field of a distribution of particles rotating about an axis of symmetry, Proc. Roy. Soc. Edinburgh 57 (1937) 135 [INSPIRE].zbMATHGoogle Scholar
  17. [17]
    K. Gödel, An example of a new type of cosmological solutions of Einstein’s field equations of graviation, Rev. Mod. Phys. 21 (1949) 447 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  18. [18]
    M. Rooman and P. Spindel, Gödel metric as a squashed Anti-de Sitter geometry, Class. Quant. Grav. 15 (1998) 3241 [gr-qc/9804027] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. [19]
    P. Menotti and D. Seminara, Closed timelike curves and the energy condition in (2 + 1)-dimensional gravity, Phys. Lett. B 301 (1993) 25 [Erratum ibid. B 307 (1993) 404] [hep-th/9212078] [INSPIRE].
  20. [20]
    S. Deser and B. Laurent, Stationary axisymmetric solutions of three-dimensional Einstein gravity, Gen. Rel. Grav. 18 (1986) 617 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Mars and J.M. Senovilla, Axial symmetry and conformal Killing vectors, Class. Quant. Grav. 10 (1993) 1633 [gr-qc/0201045] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. [22]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [Erratum ibid. 4 (1963) 998].Google Scholar
  24. [24]
    G.S. Hall, T. Morgan and Z. Perjes, Three-dimensional space-times, Gen. Rel. Grav. 19 (1987) 1137.MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les Mathématiques d’aujourd’hui, Astérisque (1985) 95.Google Scholar
  26. [26]
    J. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. [27]
    R. Bousso, Holography in general space-times, JHEP 06 (1999) 028 [hep-th/9906022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E.K. Boyda, S. Ganguli, P. Hořava and U. Varadarajan, Holographic protection of chronology in universes of the Godel type, Phys. Rev. D 67 (2003) 106003 [hep-th/0212087] [INSPIRE].ADSGoogle Scholar
  29. [29]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44S10 (1966) 1 [Erratum ibid. B 48 (1967) 463].Google Scholar
  30. [30]
    M. Lubo, M. Rooman and P. Spindel, (2 + 1)-dimensional stars, Phys. Rev. D 59 (1999) 044012 [gr-qc/9806104] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    O. Coussaert and M. Henneaux, Selfdual solutions of (2 + 1) Einstein gravity with a negative cosmological constant, hep-th/9407181 [INSPIRE].
  32. [32]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institute of Physics of the ASCRPrague 8Czech Republic

Personalised recommendations