Advertisement

Journal of High Energy Physics

, 2011:20 | Cite as

Moduli space and wall-crossing formulae in higher-rank gauge theories

  • Heng-Yu Chen
  • Nick Dorey
  • Kirill PetuninEmail author
Article

A bstract

We study the interplay between wall-crossing in four-dimensional gauge theory and instanton contributions to the moduli space metric of the same theory on \(\mathbb{R}^{3}\times S^{1}\). We consider \(\mathcal{N}=2\) SUSY Yang-Mills with gauge group SU(n) and focus on walls of marginal stability which extend to weak coupling. By comparison with explicit field theory results we verify the Kontsevich-Soibelman formula for the change in the BPS spectrum at these walls and check the smoothness of the metric in the corresponding compactified theory. We also verify in detail the predictions for the one instanton contribution to the metric coming from the non-linear integral equations of Gaiotto, Moore and Nietzke.

K eywords

Supersymmetric gauge theory Integrable Equations in Physics Nonperturbative Effects Extended Supersymmetry 

References

  1. [1]
    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
  2. [2]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    C. Fraser and T.J. Hollowood, On the weak coupling spectrum of N = 2 supersymmetric SU(n) gauge theory, Nucl. Phys. B 490 (1997) 217 [hep-th/9610142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    C. Fraser and D. Tong, Instantons, three dimensional gauge theories and monopole moduli spaces, Phys. Rev. D 58 (1998) 085001 [hep-th/9710098] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU(N ) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].Google Scholar
  9. [9]
    R. Kaul, Monopole mass in supersymmetric gauge theories, Phys. Lett. B 143 (1984) 427 [INSPIRE].ADSGoogle Scholar
  10. [10]
    H.-Y. Chen, N. Dorey and K. Petunin, Wall crossing and instantons in compactified gauge theory, JHEP 06 (2010) 024 [arXiv:1004.0703] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    H.-Y. Chen and K. Petunin, Notes on wall crossing and instanton in compactified gauge theory with matter, JHEP 10 (2010) 106 [arXiv:1006.5957] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Dorey, V.V. Khoze, M. Mattis, D. Tong and S. Vandoren, Instantons, three-dimensional gauge theory and the Atiyah-Hitchin manifold, Nucl. Phys. B 502 (1997) 59 [hep-th/9703228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Dorey, T.J. Hollowood and V.V. Khoze, Notes on soliton bound state problems in gauge theory and string theory, hep-th/0105090 [INSPIRE].
  14. [14]
    N. Dorey, Instantons, compactification and S-duality in N = 4 SUSY Yang-Mills theory. I, JHEP 04 (2001) 008 [hep-th/0010115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    B.J. Taylor, On the strong coupling spectrum of pure SU(3) Seiberg-Witten theory, JHEP 08 (2001) 031 [hep-th/0107016] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B.J. Taylor, On the moduli space of SU(3) Seiberg-Witten theory with matter, JHEP 12 (2002) 040 [hep-th/0211086] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K.-M. Lee, E.J. Weinberg and P. Yi, The moduli space of many BPS monopoles for arbitrary gauge groups, Phys. Rev. D 54 (1996) 1633 [hep-th/9602167] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    J.P. Gauntlett, N. Kim, J. Park and P. Yi, Monopole dynamics and BPS dyons N = 2 super Yang-Mills theories, Phys. Rev. D 61 (2000) 125012 [hep-th/9912082] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    M. Stern and P. Yi, Counting Yang-Mills dyons with index theorems, Phys. Rev. D 62 (2000) 125006 [hep-th/0005275] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    C. Pope, Axial vector anomalies and the index theorem in charged Schwarzschild and Taub-NUT spaces, Nucl. Phys. B 141 (1978) 432 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WisconsinMadisonUSA
  2. 2.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations