Limits on scalar leptoquark interactions and consequences for GUTs

  • Ilja Doršner
  • Jure Drobnak
  • Svjetlana Fajfer
  • Jernej F. Kamenik
  • Nejc Košnik
Open Access


A colored weak singlet scalar state with hypercharge 4/3 is one of the possible candidates for the explanation of the unexpectedly large forward-backward asymmetry in \( t\bar{t} \) production as measured by the CDF and DØ experiments. We investigate the role of this state in a plethora of flavor changing neutral current processes and precision observables of down-quarks and charged leptons. Our analysis includes tree- and loop-level mediated observables in the K and B systems, the charged lepton sector, as well as the \( Z \to b\bar{b} \) decay width. We perform a global fit of the relevant scalar couplings. This approach can explain the (g − 2) μ anomaly while tensions among the CP violating observables in the quark sector, most notably the nonstandard CP phase (and width difference) in the B s system cannot be fully relaxed. The results are interpreted in a class of grand unified models which allow for a light colored scalar with a mass below 1 TeV. We find that the renormalizable SU(5) scenario is not compatible with our global fit, while in the SO(10) case the viability requires the presence of both the 126- and 120-dimensional representations.


Beyond Standard Model Rare Decays GUT Quark Masses and SM Parameters 


  1. [1]
    J.F. Kamenik, J. Shu and J. Zupan, Review of new physics effects in \( t\bar{t} \) production, arXiv:1107.5257 [INSPIRE].
  2. [2]
    I. Doršner, S. Fajfer, J.F. Kamenik and N. Košnik, Light colored scalars from grand unification and the forward-backward asymmetry in \( t\bar{t} \) production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, On models of new physics for the Tevatron top A FB, Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Blum, Y. Hochberg and Y. Nir, Scalar-mediated \( t\bar{t} \) forward-backward asymmetry, arXiv:1107.4350 [INSPIRE].
  5. [5]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, Tevatron top A FB versus LHC top physics, arXiv:1107.4364 [INSPIRE].
  6. [6]
    I. Doršner, S. Fajfer, J.F. Kamenik and N. Košnik, Light colored scalar as messenger of up-quark flavor dynamics in grand unified theories, Phys. Rev. D 82 (2010) 094015 [arXiv:1007.2604] [INSPIRE].ADSGoogle Scholar
  7. [7]
    H. Georgi, Unified gauge theories, in the Proceedings of Theories and Experiments in High-Energy Physics, Center for Theoretical Physics, University of Miami, Miami U.S.A. (1975) [INSPIRE].
  8. [8]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Muon g-2 collaboration, G. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Jegerlehner, Essentials of the muon g-2, Acta Phys. Polon. B 38 (2007) 3021 [hep-ph/0703125] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CDF collaboration, T. Aaltonen et al., First flavor-tagged determination of bounds on mixing-induced CP-violation in B s 0J/ψϕ decays, Phys. Rev. Lett. 100 (2008) 161802 [arXiv:0712.2397] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    DØ collaboration, V. Abazov et al., Measurement of B s 0 mixing parameters from the flavor-tagged decay B s 0J/ψϕ, Phys. Rev. Lett. 101 (2008) 241801 [arXiv:0802.2255] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    DØ collaboration, Updated combined DØ results on ΔΓs versus CP-violating phase ϕ s J/ψϕ, note 6093-CONF, Fermilab, Batavia U.S.A. (2010).Google Scholar
  15. [15]
    CDF collaboration, An updated measurement of the CP violating phase β s J/ψϕ in B s 0J/ψϕ decays using 5.2 fb−1 of integrated luminosity, public note 10206, Fermilab, Batavia U.S.A. (2010).Google Scholar
  16. [16]
    V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. D 82 (2010) 032001ADSGoogle Scholar
  17. [17]
    DØ collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. D 82 (2010) 032001 [arXiv:1005.2757] [INSPIRE].ADSGoogle Scholar
  18. [18]
    DØ collaboration, V.M. Abazov et al., Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb−1 of \( p\bar{p} \) collisions, Phys. Rev. D 84 (2011) 052007 [arXiv:1106.6308] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch, et al., Anatomy of new physics in \( B - \bar{B} \) mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].ADSGoogle Scholar
  20. [20]
    Y. Grossman, The B s width difference beyond the standard model, Phys. Lett. B 380 (1996) 99 [hep-ph/9603244] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J.P. Saha, B. Misra and A. Kundu, Constraining scalar leptoquarks from the K and B sectors, Phys. Rev. D 81 (2010) 095011 [arXiv:1003.1384] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. GG 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    CDF and DØ collaboration, Combination of CDF and DØ results on the mass of the top quark using up to 5.6 fb−1 of data, arXiv:1007.3178 [INSPIRE].
  25. [25]
    G. Isidori and R. Unterdorfer, On the short distance constraints from K L,Sμ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. D’Ambrosio, G. Isidori and J. Portoles, Can we extract short distance information from B(K L → μ + μ )?, Phys. Lett. B 423 (1998) 385 [hep-ph/9708326] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Valencia, Long distance contribution to KL →  + , Nucl. Phys. B 517 (1998) 339 [hep-ph/9711377] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    KLOE collaboration, F. Ambrosino et al., Search for the K S → e + e − decay with the KLOE detector, Phys. Lett. B 672 (2009) 203 [arXiv:0811.1007] [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Ecker and A. Pich, The longitudinal muon polarization in K L → μ + μ , Nucl. Phys. B 366 (1991) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    LHCb collaboration, J. Serrano, Search for the very rare decays B s/d → μ + μ at LHCb, LHCb-TALK-2011-143, CERN, Geneva Switzerland (2011).
  32. [32]
    BABAR collaboration, P.F. Harrison and H.R. Quinn eds., The BABAR physics book: physics at an asymmetric B factory, SLAC report SLAC-R-50 4, Stanford U.S.A. (1998).Google Scholar
  33. [33]
    BABAR collaboration, B. Aubert et al., A search for the rare decay B 0 → τ + τ at BABAR, Phys. Rev. Lett. 96 (2006) 241802 [hep-ex/0511015] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Descotes-Genon, D. Ghosh, J. Matias and M. Ramon, Exploring new physics in the C7-C7′ plane, JHEP 06 (2011) 099 [arXiv:1104.3342] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \bar{B} \to {X_s}{\ell^{+} }{\ell^{-} } \) and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    BABAR collaboration, B. Aubert et al., Measurement of the B → X s+ branching fraction with a sum over exclusive modes, Phys. Rev. Lett. 93 (2004) 081802 [hep-ex/0404006] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Belle collaboration, M. Iwasaki et al., Improved measurement of the electroweak penguin process B → X s+, Phys. Rev. D 72 (2005) 092005 [hep-ex/0503044] [INSPIRE].ADSGoogle Scholar
  38. [38]
    T. Huber, T. Hurth and E. Lunghi, Logarithmically enhanced corrections to the decay rate and forward backward asymmetry in \( \bar{B} \to {X_s}{\ell^{+} }{\ell^{-} } \), Nucl. Phys. B 802 (2008) 40 [arXiv:0712.3009] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Ball and R. Zwicky, New results on B → π, K, η decay form factors from light-cone sum rules, Phys. Rev. D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Khodjamirian, T. Mannel, N. Offen and Y.-M. Wang, B → πℓν l width andV ubfrom QCD light-cone sum rules, Phys. Rev. D 83 (2011) 094031 [arXiv:1103.2655] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Feldmann, P. Kroll and B. Stech, Mixing and decay constants of pseudoscalar mesons: the sequel, Phys. Lett. B 449 (1999) 339 [hep-ph/9812269] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.L. Rosner and S. Stone, Leptonic decays of charged pseudoscalar mesons, arXiv:1002.1655 [INSPIRE].
  43. [43]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [hep-ph/0203110] [INSPIRE].ADSGoogle Scholar
  44. [44]
    SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μ → e conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].ADSGoogle Scholar
  45. [45]
    SINDRUM II collaboration, W.H. Bertl et al., A search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ parameter and \( {B^0}{ - }{\bar{B}^0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Inami and C. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \( {k_L} \to \mu \overline {mu} \) , \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) and \( {K^0} \leftrightarrow {\bar{K}^0} \), Prog. Theor. Phys. 65 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A.J. Buras, D. Guadagnoli and G. Isidori, On ϵ K beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Herrlich and U. Nierste, Enhancement of the K L -K S mass difference by short distance QCD corrections beyond leading logarithms, Nucl. Phys. B 419 (1994) 292 [hep-ph/9310311] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A.J. Buras, Climbing NLO and NNLO summits of weak decays, arXiv:1102.5650 [INSPIRE].
  51. [51]
    J. Brod and M. Gorbahn, ϵ K at Next-to-Next-to-Leading Order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Dighe, A. Kundu and S. Nandi, Enhanced \( {B_s} - {\bar{B}_s} \) lifetime difference and anomalous like-sign dimuon charge asymmetry from new physics in B s → τ + τ , Phys. Rev. D 82 (2010) 031502 [arXiv:1005.4051] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, to appear in Probing the Standard Model of Particle Interactions, F. David and R. Gupta eds., Elsevier Science B.V., The Netherlands (1998) [hep-ph/9806471] [INSPIRE].Google Scholar
  54. [54]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ-lepton properties, arXiv:1010.1589 [INSPIRE].
  55. [55]
    C.W. Bauer and N.D. Dunn, Comment on new physics contributions to Γ12 s, Phys. Lett. B 696 (2011) 362 [arXiv:1006.1629] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B^0} - {\bar{B}^0} \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. Chakraverty, D. Choudhury and A. Datta, A nonsupersymmetric resolution of the anomalous muon magnetic moment, Phys. Lett. B 506 (2001) 103 [hep-ph/0102180] [INSPIRE].ADSGoogle Scholar
  59. [59]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ + → e + γ, arXiv:1107.5547 [INSPIRE].
  60. [60]
    R.J. Oakes, J.M. Yang and B.-L. Young, Implications of LEP/SLD data for new physics in \( Zb\bar{b} \) couplings, Phys. Rev. D 61 (2000) 075007 [hep-ph/9911388] [INSPIRE].ADSGoogle Scholar
  61. [61]
    MEG collaboration, S. Dussoni, Searching for lepton flavor violation with the MEG experiment (or looking for ying pigs), Nucl. Phys. Proc. Suppl. 187 (2009) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    MEG collaboration, J. Adam et al., A limit for the μ → eγ decay from the MEG experiment, Nucl. Phys. B 834 (2010) 1 [arXiv:0908.2594] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    SuperB collaboration, B. O’Leary et al., SuperB progress reports — physics, arXiv:1008.1541 [INSPIRE].
  64. [64]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
  65. [65]
    Belle collaboration, K. Ikado et al., Evidence of the purely leptonic decay \( {B^{-} } \to {\tau^{-} }{\overline {nu}_\tau } \), Phys. Rev. Lett. 97 (2006) 251802 [hep-ex/0604018] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    BABAR collaboration, B. Aubert et al., A search for B + →  + ν recoiling against \( {B^{-} } \to {D^0}{\ell^{-} }\bar{\nu }X \), Phys. Rev. D 81 (2010) 051101 [arXiv:0809.4027] [INSPIRE].ADSGoogle Scholar
  67. [67]
    Belle collaboration, K. Hara et al., Evidence for \( {B^{-} } \to {\tau^{-} }\bar{\nu } \) with a semileptonic tagging method, Phys. Rev. D 82 (2010) 071101 [arXiv:1006.4201] [INSPIRE].ADSGoogle Scholar
  68. [68]
    BABAR collaboration, P. del Amo Sanchez et al., Evidence for B + − > τ + ν τ decays using hadronic B tags, arXiv:1008.0104 [INSPIRE].
  69. [69]
    H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].ADSGoogle Scholar
  72. [72]
    K. Babu and E. Ma, Suppression of proton decay in SU(5) grand unification, Phys. Lett. B 144 (1984) 381 [INSPIRE].ADSGoogle Scholar
  73. [73]
    A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett. B 271 (1991) 138 [INSPIRE].ADSGoogle Scholar
  74. [74]
    I. Doršner and P. Fileviez Perez, Unification versus proton decay in SU(5), Phys. Lett. B 642 (2006) 248 [hep-ph/0606062] [INSPIRE].ADSGoogle Scholar
  75. [75]
    I. Doršner and I. Mocioiu, Predictions from type-II see-saw mechanism in SU(5), Nucl. Phys. B 796 (2008) 123 [arXiv:0708.3332] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    P. Fileviez Perez, Renormalizable adjoint SU(5), Phys. Lett. B 654 (2007) 189 [hep-ph/0702287] [INSPIRE].ADSGoogle Scholar
  77. [77]
    I. Doršner, S. Fajfer, J.F. Kamenik and N. Košnik, Can scalar leptoquarks explain the \( {f_{{D_s}}} \) puzzle?, Phys. Lett. B 682 (2009) 67 [arXiv:0906.5585] [INSPIRE].ADSGoogle Scholar
  78. [78]
    I. Doršner, P. Fileviez Perez and R. Gonzalez Felipe, Phenomenological and cosmological aspects of a minimal GUT scenario, Nucl. Phys. B 747 (2006) 312 [hep-ph/0512068] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Buras, J.R. Ellis, M. Gaillard and D.V. Nanopoulos, Aspects of the grand unification of strong, weak and electromagnetic interactions, Nucl. Phys. B 135 (1978) 66 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A. De Rujula, H. Georgi and S. Glashow, Flavor goniometry by proton decay, Phys. Rev. Lett. 45 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P. Fileviez Perez, H. Iminniyaz and G. Rodrigo, Proton stability, dark matter and light color octet scalars in adjoint SU(5) unification, Phys. Rev. D 78 (2008) 015013 [arXiv:0803.4156] [INSPIRE].ADSGoogle Scholar
  82. [82]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].ADSGoogle Scholar
  83. [83]
    P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  84. [84]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan February 13–14 1979 [INSPIRE].
  85. [85]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, CERN PRINT-80-0576, in Supergravity Workshop, Stony Brook U.S.A. September 27{29 1979, pg. 315 [INSPIRE].
  86. [86]
    S.L. Glashow, The future of elementary particle physics, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687 [INSPIRE].Google Scholar
  87. [87]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  89. [89]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    I. Doršner and P. Fileviez Perez, Upper bound on the mass of the type III seesaw triplet in an SU(5) model, JHEP 06 (2007) 029 [hep-ph/0612216] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    B. Bajc, M. Nemevšek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [INSPIRE].ADSGoogle Scholar
  93. [93]
    CMS collaboration, V. Khachatryan et al., Search for pair production of first-generation scalar leptoquarks in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 106 (2011) 201802 [arXiv:1012.4031] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    ATLAS collaboration, G. Aad et al., Search for pair production of first or second generation leptoquarks in proton-proton collisions at \( \sqrt {s} = 7 \) TeV using the ATLAS detector at the LHC, arXiv:1104.4481 [INSPIRE].
  95. [95]
    L. Lavoura, H. Kuhbock and W. Grimus, Charged-fermion masses in SO(10): analysis with scalars in 10 + 120, Nucl. Phys. B 754 (2006) 1 [hep-ph/0603259] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Ilja Doršner
    • 1
  • Jure Drobnak
    • 2
  • Svjetlana Fajfer
    • 3
    • 2
  • Jernej F. Kamenik
    • 2
    • 3
  • Nejc Košnik
    • 4
    • 2
  1. 1.Department of PhysicsUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.J. Stefan InstituteLjubljanaSlovenia
  3. 3.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Laboratoire de l’Accélérateur Linéaire, Centre d’OrsayUniversité de Paris-Sud XIOrsay cedexFrance

Personalised recommendations