Journal of High Energy Physics

, 2010:154 | Cite as

Quark disconnected diagrams in chiral perturbation theory

Open Access


We show how quark-disconnected and quark-connected contributions to hadronic n-point functions can be written as independent correlators for which one can derive expressions in partially quenched chiral effective theory. As an example we apply the idea to the case of the hadronic vacuum polarisation. In particular, we consider the cases of the Nf = 2 theory without and with a partially quenched strange quark and also the Nf= 2+ 1 theory. In the latter two cases a parameter-free prediction for the disconnected contribution at NLO in the effective theory is given. Finally we show how twisted boundary conditions can then be used in lattice QCD to improve the q2 resolution in the connected contributions even when flavour singlet operators are considered.


Lattice QCD Nonperturbative Effects Electromagnetic Processes and Properties Chiral Lagrangians 


  1. [1]
    H. Neff, N. Eicker, T. Lippert, J.W. Negele and K. Schilling, On the low fermionic eigenmode dominance in QCD on the lattice, Phys. Rev. D 64 (2001) 114509 [hep-lat/0106016] [SPIRES].ADSGoogle Scholar
  2. [2]
    J. Foley et al., Practical all-to-all propagators for lattice QCD, Comput. Phys. Commun. 172 (2005) 145 [hep-lat/0505023] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158 (1984) 142 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    C.W. Bernard and M.F.L. Golterman, Chiral perturbation theory for the quenched approximation of QCD, Phys. Rev. D 46 (1992) 853 [hep-lat/9204007] [SPIRES].ADSGoogle Scholar
  6. [6]
    C.W. Bernard and M.F.L. Golterman, Partially quenched gauge theories and an application to staggered fermions, Phys. Rev. D 49 (1994) 486 [hep-lat/9306005] [SPIRES].ADSGoogle Scholar
  7. [7]
    S.R. Sharpe and N. Shoresh, Physical results from unphysical simulations, Phys. Rev. D 62 (2000) 094503 [hep-lat/0006017] [SPIRES].ADSGoogle Scholar
  8. [8]
    F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    C.T. Sachrajda and G. Villadoro, Twisted boundary conditions in lattice simulations, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033] [SPIRES].ADSGoogle Scholar
  10. [10]
    P.F. Bedaque and J.-W. Chen, Twisted valence quarks and hadron interactions on the lattice, Phys. Lett. B 616 (2005) 208 [hep-lat/0412023] [SPIRES].ADSGoogle Scholar
  11. [11]
    P.F. Bedaque, Aharonov-Bohm effect and nucleon nucleon phase shifts on the lattice, Phys. Lett. B 593 (2004) 82 [nucl-th/0402051] [SPIRES].ADSGoogle Scholar
  12. [12]
    G.M. de Divitiis, R. Petronzio and N. Tantalo, On the discretization of physical momenta in lattice QCD, Phys. Lett. B 595 (2004) 408 [hep-lat/0405002] [SPIRES].ADSGoogle Scholar
  13. [13]
    B.C. Tiburzi, Twisted quarks and the nucleon axial current, Phys. Lett. B 617 (2005) 40 [hep-lat/0504002] [SPIRES].ADSGoogle Scholar
  14. [14]
    UKQCD collaboration, J.M. Flynn, A. Jüttner and C.T. Sachrajda, A numerical study of partially twisted boundary conditions, Phys. Lett. B 632 (2006) 313 [hep-lat/0506016] [SPIRES].ADSGoogle Scholar
  15. [15]
    S.R. Sharpe, A pplications of chiral perturbation theory to lattice QCD, hep-lat/0607016 [SPIRES].
  16. [16]
    M. Golterman, A pplications of chiral perturbation theory to lattice QCD, arXiv:0912.4042 [SPIRES].
  17. [17]
    A. Morel, Chiral logarithms in quenched QCD, J. Phys. (France) 48 (1987) 1111 [SPIRES].Google Scholar
  18. [18]
    T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    QCDSF collaboration, M. Göckeler et al., Vacuum polarisation and hadronic contribution to muon g-2 from lattice QCD, Nucl. Phys. B 688 (2004) 135 [hep-lat/0312032] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    L. Giusti and M. Lüscher, Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks, JHEP 03 (2009) 013 [arXiv:0812.3638] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A. J¨uttner and M. Della Morte, New ideas for g-2 on the lattice, PoS( LAT2009) 143 [arXiv:0910.3755] [SPIRES].
  22. [22]
    S. Weinberg, The quantum theory of fields, volume 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2005) [SPIRES].Google Scholar
  23. [23]
    R. Kaiser, Anomalies and WZW-term of two-flavour QCD, Phys. Rev. D 63 (2001) 076010 [hep-ph/0011377] [SPIRES].ADSGoogle Scholar
  24. [24]
    R. Kaiser and H. Leutwyler, Large-N c in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order p 6, Ann. Phys. 280 (2000) 100 [hep-ph/9907333] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    E. Golowich and J. Kambor, Two loop analysis of vector current propagators in chiral perturbation theory, Nucl. Phys. B 447 (1995) 373 [hep-ph/9501318] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    RBC -UKQCD collaboration, C. Allton et al., Physical results from 2+ 1 flavor domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [SPIRES].ADSGoogle Scholar
  28. [28]
    C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys. B 321 (1989) 311 [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    B.B. Brandt et al., Wilson fermions at fine lattice spacings: scale setting, pion form factors and (g − 2)μ, arXiv:1010.2390 [SPIRES].
  31. [31]
    M. Della Morte, B. Jäger, A. Jüttner and H. Wittig, in preparation.Google Scholar
  32. [32]
    P.A. Boyle, J.M. Flynn, A. Jüttner, C.T. Sachrajda and J.M. Zanotti, Hadronic form factors in lattice QCD at small and vanishing momentum transfer, JHEP 05 (2007) 016 [hep-lat/0703005] [SPIRES].Google Scholar
  33. [33]
    F.-J. Jiang and B.C. Tiburzi, Flavor twisted boundary conditions in the Breit frame, Phys. Rev. D 78 (2008) 037501 [arXiv:0806.4371] [SPIRES].ADSGoogle Scholar
  34. [34]
    D.B. Renner and X. Feng, Hadronic contribution to g-2 from twisted mass fermions, PoS(LATTICE 2008)129 [arXiv:0902.2796] [SPIRES].
  35. [35]
    S.R. Sharpe and R.L. Singleton Jr, Spontaneous flavor and parity breaking with Wilson fermions, Phys. Rev. D 58 (1998) 074501 [hep-lat/9804028] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institut für KernphysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.CERN, Physics DepartmentGeneva 23Switzerland

Personalised recommendations