Journal of High Energy Physics

, 2010:151 | Cite as

Effective holographic theories for low-temperature condensed matter systems

  • Christos Charmousis
  • Blaise GoutérauxEmail author
  • Bom Soo Kim
  • Elias Kiritsis
  • Rene Meyer
Open Access


The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents (γ, δ) that control the IR dynamics. By studying the thermodynamics, spectra and conductivities of several classes of charged dilatonic black hole solutions that include the charge density back reaction fully, the landscape of such theories in view of condensed matter applications is characterized. Several regions of the (γ, δ) plane can be excluded as the extremal solutions have unacceptable singularities. The classical solutions have generically zero entropy at zero temperature, except when γ = δ where the entropy at extremality is finite. The general scaling of DC resistivity with temperature at low temperature, and AC conductivity at low frequency and temperature across the whole (γ, δ) plane, is found. There is a codimension-one region where the DC resistivity is linear in the temperature. For massive carriers, it is shown that when the scalar operator is not the dilaton, the DC resistivity scales as the heat capacity (and entropy) for planar (3d) systems. Regions are identified where the theory at finite density is a Mott-like insulator at T = 0. We also find that at low enough temperatures the entropy due to the charge carriers is generically larger than at zero charge density.


Black Holes in String Theory AdS-CFT Correspondence Black Holes 


  1. [1]
    S. Sachdev and M. Mueller, Quantum criticality and black holes, arXiv:0810.3005 [SPIRES].
  2. [2]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  4. [4]
    S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [SPIRES].
  5. [5]
    G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].
  6. [6]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  10. [10]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].
  11. [11]
    S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  12. [12]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    P. Breitenlohner and D.Z. Freedman, Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. [16]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].ADSGoogle Scholar
  23. [23]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    E. D’Hoker and P. Kraus, Charged magnetic brane solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [SPIRES].CrossRefMathSciNetGoogle Scholar
  25. [25]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    D. Bak and S.-J. Rey, Composite fermion metals from dyon black holes and S-Duality, JHEP 09 (2010) 032 [arXiv:0912.0939] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    F. Aprile, S. Franco, D. Rodriguez-Gomez and J.G. Russo, Phenomenological models of holographic superconductors and Hall currents, JHEP 05 (2010) 102 [arXiv:1003.4487] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    C.-M. Chen and D.-W. Pang, Holography of charged dilaton black holes in general dimensions, JHEP 06 (2010) 093 [arXiv:1003.5064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Black hole thermodynamics and heavy fermion metals, JHEP 08 (2010) 027 [arXiv:1003.5361] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    D. Arean, M. Bertolini, J. Evslin and T. Prochazka, On holographic superconductors with DC current, JHEP 07 (2010) 060 [arXiv:1003.5661] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].zbMATHMathSciNetGoogle Scholar
  35. [35]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [SPIRES].ADSGoogle Scholar
  38. [38]
    S. Fernando and D. Krug, Charged black hole solutions in Einstein-Born-Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. [39]
    R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sen’s tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [SPIRES].ADSGoogle Scholar
  42. [42]
    C. Charmousis, R. Emparan and R. Gregory, Self-gravity of brane worlds: a new hierarchy twist, JHEP 05 (2001) 026 [hep-th/0101198] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    Y. Kinar, E. Schreiber and J. Sonnenschein, Q anti-Q potential from strings in curved spacetime: Classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [SPIRES].CrossRefMathSciNetGoogle Scholar
  44. [44]
    P. Romatschke and D.T. Son, Spectral sum rules for the quark-gluon plasma, Phys. Rev. D 80 (2009) 065021 [arXiv:0903.3946] [SPIRES].ADSGoogle Scholar
  45. [45]
    U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity, arXiv:1007. 0500 [SPIRES].
  46. [46]
    U. Gürsoy, Gravity/ spin-model correspondence and holographic superfluids, arXiv:1007.4854 [SPIRES].
  47. [47]
    C. Charmousis, Dilaton spacetimes with a Liouville potential, Class. Quant. Grav. 19 (2002) 83 [hep-th/0107126] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. [48]
    E. Kiritsis and F. Nitti, On massless 4D gravitons from 5D asymptotically AdS space-times, Nucl. Phys. B 772 (2007) 67 [hep-th/0611344] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    J. Alanen, K. Kajantie and K. Tuominen, Thermodynamics of quasi conformal theories from gauge/gravity duality, Phys. Rev. D 82 (2010) 055024 [arXiv:1003.5499] [SPIRES].ADSGoogle Scholar
  50. [50]
    R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  52. [52]
    G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [SPIRES].MathSciNetADSGoogle Scholar
  54. [54]
    S. Monni and M. Cadoni, Dilatonic black holes in a S-duality model, Nucl. Phys. B 466 (1996) 101 [hep-th/9511067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    G. Clement, D. Gal’tsov and C. Leygnac, Linear dilaton black holes, Phys. Rev. D 67 (2003) 024012 [hep-th/0208225] [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    G. Clement and C. Leygnac, Non-asymptotically flat, non-AdS dilaton black holes, Phys. Rev. D 70 (2004) 084018 [gr-qc/0405034] [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    G. Clement, D. Gal’tsov and C. Leygnac, Black branes on the linear dilaton background, Phys. Rev. D 71 (2005) 084014 [hep-th/0412321] [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    K.C.K. Chan, J .H. Horne and R.B. Mann, Charged dilaton black holes with unusual asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    S.J. Poletti and D.L. Wiltshire, The Global properties of static spherically symmetric charged dilaton space-times with a Liouville potential, Phys. Rev. D 50 (1994) 7260 [gr-qc/9407021] [SPIRES].MathSciNetADSGoogle Scholar
  60. [60]
    S.J. Poletti, J. Twamley and D.L. Wiltshire, Charged dilaton black holes with a cosmological constant, Phys. Rev. D 51 (1995) 5720 [hep-th/9412076] [SPIRES].ADSGoogle Scholar
  61. [61]
    C.J . Gao and S.N. Zhang, Dilaton black holes in de Sitter or Anti-de Sitter universe, Phys. Rev. D 70 (2004) 124019 [hep-th/0411104] [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    S. Mignemi, Exact solutions of dilaton gravity with (Anti)-de Sitter asymptotics, arXiv:0907.0422 [SPIRES].
  63. [63]
    A. Sheykhi, M.H. Dehghani and S.H. Hendi, Thermodynamic instability of charged dilaton black holes in AdS spaces, Phys. Rev. D 81 (2010) 084040 [arXiv:0912.4199] [SPIRES].ADSGoogle Scholar
  64. [64]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotically Anti-de Sitter spacetimes and scalar fields with a logarithmic branch, Phys. Rev. D 70 (2004) 044034 [hep-th/0404236] [SPIRES].MathSciNetADSGoogle Scholar
  66. [66]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotic behavior and Hamiltonian analysis of Anti-de Sitter gravity coupled to scalar fields, Annals Phys. 322 (2007) 824 [hep-th/0603185] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  67. [67]
    J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett. A6 (1991) 2353 [SPIRES].MathSciNetADSGoogle Scholar
  68. [68]
    C.F.E. Holzhey and F. Wilczek, Black holes as elementary particles, Nucl. Phys. B 380 (1992) 447 [hep-th/9202014] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  69. [69]
    E. Perlmutter, Domain wall holography for finite temperature scaling solutions, arXiv:1006.2124 [SPIRES].
  70. [70]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].MathSciNetADSGoogle Scholar
  71. [71]
    T. Regge and C. Teitelboim, Role of surface integrals in the hamiltonian formulation of general relativity, Ann. Phys. 88 (1974) 286 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  72. [72]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES].MathSciNetADSGoogle Scholar
  73. [73]
    S.W. Hawking and S.F. Ross, Duality between electric and magnetic black holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [SPIRES].MathSciNetADSGoogle Scholar
  74. [74]
    M. Henneaux and C. Teitelboim, Asymptotically Anti-de Sitter spaces, Commun. Math. Phys. 98 (1985) 391 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  75. [75]
    C. Martinez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev. D 70 (2004) 084035 [hep-th/0406111] [SPIRES].MathSciNetADSGoogle Scholar
  76. [76]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Christos Charmousis
    • 1
    • 2
  • Blaise Goutéraux
    • 1
    Email author
  • Bom Soo Kim
    • 3
    • 4
  • Elias Kiritsis
  • Rene Meyer
    • 4
  1. 1.Univ. Paris-Sud, Laboratoire de Physique ThéoriqueOrsayFrance
  2. 2.LMPT, Parc de GrandmontUniversité Francois RabelaisToursFrance
  3. 3.IESL-FORTHHeraklionGreece
  4. 4.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations