Journal of High Energy Physics

, 2010:150 | Cite as

Flavor mixing in gauge-Higgs unification

  • Yuki Adachi
  • Nobuaki Kurahashi
  • C.S. Lim
  • Nobuhito Maru


We discuss flavor mixing and resultant flavor changing neutral current processes in the SU(3) ⊗ SU(3)color gauge-Higgs unification scenario. To achieve flavor violation is a challenging issue in the scenario, since the Yukawa couplings are originally higher dimensional gauge interactions. We argue that the presence of Z 2-odd bulk masses of fermions plays a crucial role as the new source of flavor violation. Although introducing brane-localized mass terms in addition to the bulk masses is necessary to realize flavor mixing, if the bulk masses were universal among generations, the flavor mixing and flavor changing neutral current processes are known to disappear. We also discuss whether natural flavor conservation is realized in the scenario. It is shown that the new source of flavor violation leads to flavor changing neutral current processes at the tree level due to the exchange of non-zero Kaluza-Klein gauge bosons. As a typical example we calculate the rate of \( {K^0} - {\overline K^0} \) mixing due to the non-zero Kaluza-Klein gluon exchange at the tree level. The obtained result for the mass difference of neutral kaon is suppressed by the inverse powers of the compactification scale. By comparing our prediction with the data we obtain the lower bound of the compactification scale as a function of one unfixed parameter of the theory, which is of \( \mathcal{O}\left( {10} \right) \) TeV, except for some extreme cases. We argue that the reason to get such rather mild lower bound is the presence of “GIM-like” mechanism, which is a genuine feature of GHU scenario.


Phenomenological Models Phenomenology of Field Theories in Higher Dimensions 


  1. [1]
    N.S. Manton, A New Six-Dimensional Approach to the Weinberg-Salam Model, Nucl. Phys. B 158 (1979) 141 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    D.B. Fairlie, Higgs’ Fields and the Determination of the Weinberg Angle, Phys. Lett. B 82 (1979) 97 [SPIRES].ADSGoogle Scholar
  3. [3]
    D.B. Fairlie, Two consistent calculations of the Weinberg angle, J. Phys. G 5 (1979) L55 [SPIRES].ADSGoogle Scholar
  4. [4]
    Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B 126 (1983) 309 [SPIRES].ADSGoogle Scholar
  5. [5]
    Y. Hosotani, Dynamical Gauge Symmetry Breaking as the Casimir Effect, Phys. Lett. B 129 (1983) 193 [SPIRES].ADSGoogle Scholar
  6. [6]
    Y. Hosotani, Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking, Ann. Phys. 190 (1989) 233 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    H. Hatanaka, T. Inami and C.S. Lim, The gauge hierarchy problem and higher dimensional gauge theories, Mod. Phys. Lett. A 13 (1998) 2601 [hep-th/9805067] [SPIRES].ADSGoogle Scholar
  8. [8]
    I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    G. von Gersdorff, N. Irges and M. Quirós, Bulk and brane radiative effects in gauge theories on orbifolds, Nucl. Phys. B 635 (2002) 127 [hep-th/0204223] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    C.S. Lim, N. Maru and K. Hasegawa, Six dimensional gauge-Higgs unification with an extra space S 2 and the hierarchy problem, J. Phys. Soc. Jap. 77 (2008) 074101 [hep-th/0605180] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    K. Hasegawa, C.S. Lim and N. Maru, An attempt to solve the hierarchy problem based on gravity gauge Higgs unification scenario, Phys. Lett. B 604 (2004) 133 [hep-ph/0408028] [SPIRES].ADSGoogle Scholar
  13. [13]
    N. Maru and T. Yamashita, Two-loop calculation of Higgs mass in gauge-Higgs unification: 5D massless QED compactifiedon S 1, Nucl. Phys. B 754 (2006) 127 [hep-ph/0603237] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    Y. Hosotani, N. Maru, K. Takenaga and T. Yamashita, Two loop finiteness of Higgs mass and potential in the gauge-Higgs unification, Prog. Theor. Phys. 118 (2007) 1053 [arXiv:0709.2844] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  15. [15]
    C.S. Lim and N. Maru, Calculable One-Loop Contributions to S and T Parameters in the Gauge-Higgs Unification, Phys. Rev. D 75 (2007) 115011 [hep-ph/0703017] [SPIRES].ADSGoogle Scholar
  16. [16]
    N. Maru and N. Okada, Gauge-Higgs Unification at LHC, Phys. Rev. D 77 (2008) 055010 [arXiv:0711.2589] [SPIRES].ADSGoogle Scholar
  17. [17]
    N. Maru, Finite Gluon Fusion Amplitude in the Gauge-Higgs Unification, Mod. Phys. Lett. A 23 (2008) 2737 [arXiv:0803.0380][SPIRES].ADSGoogle Scholar
  18. [18]
    Y. Adachi, C.S. Lim and N. Maru, Finite Anomalous Magnetic Moment in the Gauge-Higgs Unification, Phys. Rev. D 76 (2007) 075009 [arXiv:0707.1735] [SPIRES].ADSGoogle Scholar
  19. [19]
    Y. Adachi, C.S. Lim and N. Maru, More on the Finiteness of Anomalous Magnetic Moment in the Gauge-Higgs Unification, Phys. Rev. D 79 (2009) 075018 [arXiv:0901.2229] [SPIRES].ADSGoogle Scholar
  20. [20]
    Y. Adachi, C.S. Lim and N. Maru, Neutron Electric Dipole Moment in the Gauge-Higgs Unification, Phys. Rev. D 80 (2009) 055025 [arXiv:0905.1022] [SPIRES].ADSGoogle Scholar
  21. [21]
    C.S. Lim, N. Maru and K. Nishiwaki, CP Violation due to Compactification, Phys. Rev. D 81 (2010) 076006 [arXiv:0910.2314] [SPIRES].ADSGoogle Scholar
  22. [22]
    G. Burdman and Y. Nomura, Unification of Higgs and Gauge Fields in Five Dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [SPIRES].ADSGoogle Scholar
  24. [24]
    C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, Δ F=2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    T. Inami and C.S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K_L} \to \mu \overline \mu, \,{K^{+} } \to {\pi^{+} }\nu \overline \nu \) and \( K0 \to \overline K 0 \), Prog. Theor. Phys. 65 (1981) 297 [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    I.I.Y. Bigi and A.I. Sanda, CP violation, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 9 (2000) 1 [SPIRES].Google Scholar
  30. [30]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Yuki Adachi
    • 1
  • Nobuaki Kurahashi
    • 1
  • C.S. Lim
    • 1
  • Nobuhito Maru
    • 2
  1. 1.Department of PhysicsKobe UniversityKobeJapan
  2. 2.Department of PhysicsChuo UniversityTokyoJapan

Personalised recommendations