Journal of High Energy Physics

, 2010:145 | Cite as

Holography of a composite inflaton

  • Nick Evans
  • James French
  • Keun-young KimEmail author


We study the time evolution of a brane construction that is holographically dual to a strongly coupled gauge theory that dynamically breaks a global symmetry through the generation of an effective composite Higgs vev. The D3/D7 system with a background magnetic field or non-trivial gauge coupling (dilaton) profile displays the symmetry breaking. We study motion of the D7 brane in the background of the D3 branes. For small field inflation in the field theory the effective Higgs vev rolls from zero to the true vacuum value. We study what phenomenological dilaton profile generates the slow rolling needed, hence learning how the strongly coupled gauge theory’s coupling must run. We note that evolution of our configuration in the holographic direction, representing the phyiscs of the strong interactions, can provide additional slowing of the roll time. Inflation seems to be favoured if the coupling changes by only a small amount or very gently. We speculate on how such a scenario could be realized away from N=4 gauge theory, for example, in a walking gauge theory.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetzbMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MathSciNetzbMATHGoogle Scholar
  4. [4]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge / gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    K. Ghoroku and M. Yahiro, Chiral symmetry breaking driven by dilaton, Phys. Lett. B 604 (2004) 235 [hep-th/0408040] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    R. Alvares, N. Evans, A. Gebauer and G.J. Weatherill, Holographic integral equations and walking technicolour, Phys. Rev. D 81 (2010) 025013 [arXiv:0910.3073] [SPIRES].ADSGoogle Scholar
  9. [9]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [SPIRES].CrossRefMathSciNetADSzbMATHGoogle Scholar
  10. [10]
    M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65 (2002) 126005 [hep-th/0106014] [SPIRES].ADSGoogle Scholar
  11. [11]
    M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, N = 2 gauge theories on systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals – A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [SPIRES].ADSGoogle Scholar
  15. [15]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a Holographic Model of Hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [SPIRES].ADSGoogle Scholar
  17. [17]
    K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, D3/D7 inflationary model and M-theory, Phys. Rev. D 65 (2002) 126002 [hep-th/0203019] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite Temperature Large-N Gauge Theory with Quarks in an External Magnetic Field, JHEP 07 (2008) 080 [arXiv:0709.1547] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    A.V. Zayakin, QCD Vacuum Properties in a Magnetic Field from AdS/CFT: Chiral Condensate and Goldstone Mass, JHEP 07 (2008) 116 [arXiv:0807.2917] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, arXiv:1003.2694 [SPIRES].
  26. [26]
    N. Evans, K. Jensen and K.-Y. Kim, Non Mean-Field Quantum Critical Points from Holography, arXiv:1008.1889 [SPIRES].
  27. [27]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389. MathSciNetADSGoogle Scholar
  29. [29]
    R.A. Janik, The dynamics of quark-gluon plasma and AdS/CFT, arXiv:1003.3291 [SPIRES].
  30. [30]
    J. Grosse, R.A. Janik and P. Surowka, Flavors in an expanding plasma, Phys. Rev. D 77 (2008) 066010 [arXiv:0709.3910] [SPIRES].ADSGoogle Scholar
  31. [31]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium Condensation Process in a Holographic Superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev. 122 (1961) 345 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    V.G. Filev, Criticality, Scaling and Chiral Symmetry Breaking in External Magnetic Field, JHEP 04 (2008) 088 [arXiv:0706.3811] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    V.G. Filev, C.V. Johnson and J.P. Shock, Universal Holographic Chiral Dynamics in an External Magnetic Field, JHEP 08 (2009) 013 [arXiv:0903.5345] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    T. Appelquist, J. Terning and L.C.R. Wijewardhana, The Zero Temperature Chiral Phase Transition in SU(N) Gauge Theories, Phys. Rev. Lett. 77 (1996) 1214 [hep-ph/9602385] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [SPIRES].ADSGoogle Scholar
  40. [40]
    D.D. Dietrich and F. Sannino, Walking in the SU(N), Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    T.A. Ryttov and F. Sannino, Conformal Windows of SU(N) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World, Phys. Rev. D 76 (2007) 105004 [arXiv:0707.3166] [SPIRES].ADSGoogle Scholar
  42. [42]
    T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [SPIRES].ADSGoogle Scholar
  43. [43]
    T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of the Conformal Window in QCD-like Theories, Phys. Rev. Lett. 100 (2008) 171607 [Erratum ibid. 102 (2009) 149902] [arXiv:0712.0609] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].ADSGoogle Scholar
  45. [45]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal vs confining scenario in SU(2) with adjoint fermions, Phys. Rev. D 80 (2009) 074507 [arXiv:0907.3896] [SPIRES].ADSGoogle Scholar
  46. [46]
    L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.J. Brodsky, G. de Teramond and A. Deur, AdS/QCD, Light-Front Holography and the Nonperturbative Running Coupling, Int. J. Mod. Phys. A 25 (2010) 5009 [arXiv:1002.4660] [SPIRES].ADSGoogle Scholar
  48. [48]
    B. Holdom, Raising the Sideways Scale, Phys. Rev. D 24 (1981) 1441 [SPIRES].ADSGoogle Scholar
  49. [49]
    T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].ADSGoogle Scholar
  51. [51]
    L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].ADSGoogle Scholar
  52. [52]
    N. Evans, T. Kalaydzhyan, K.-y. Kim and I. Kirsch, Non-equilibrium physics at a holographic chiral phase transition, arXiv:1011.2519 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations