Journal of High Energy Physics

, 2010:139 | Cite as

D-brane Wess-Zumino terms and U-duality

Open Access
Article

Abstract

We construct gauge-invariant and U-duality covariant expressions for Wess-Zumino terms corresponding to general Dp-branes (0 ≤ pD − 1) in arbitrary 3 ≤ D ≤ 10 dimensions. A distinguishing feature of these Wess-Zumino terms is that they contain twice as many scalars as the 10 − D compactified dimensions, in line with doubled geometry. We find that for D < 10 the charges of the higher-dimensional branes can all be expressed as products of the 0-brane charges, which include the D0-brane and the NS-NS 0-brane charges. We give the general expressions for these charges and show how they determine the non-trivial conjugacy class to which some of the higher-dimensional D-branes belong.

Keywords

D-branes String Duality 

References

  1. [1]
    J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  2. [2]
    M.J. Duff, R.R. Khuri and J.X. Lu, String solitons, Phys. Rept. 259 (1995) 213 [hep-th/9412184] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    K.S. Stelle, BPS branes in supergravity, hep-th/9803116 [SPIRES].
  4. [4]
    J. Polchinski, String Theory, vols. 1&2, Cambridge University Press (1998).Google Scholar
  5. [5]
    M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47 [hep-th/9605033] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  6. [6]
    E. Bergshoeff and M. De Roo, D-branes and T-duality, Phys. Lett. B 380 (1996) 265 [hep-th/9603123] [SPIRES].ADSGoogle Scholar
  7. [7]
    E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of Type II 7-branes and 8-branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    L.J. Romans, Massive N=2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB Supergravity Revisited, JHEP 08 (2005) 098 [hep-th/0506013] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, SL(2,R)-invariant IIB brane actions, JHEP 02 (2007) 007 [hep-th/0611036] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    B. Julia, Group Disintegrations in Supergravity and Superspace, S.W. Hawking and M. Rocek eds., Cambridge University Press (1981).Google Scholar
  12. [12]
    B. Julia, Kac-Moody Symmetry of Gravitation and Supergravity Theories in Lectures in Applied Mathematics, Am. Math. Soc. 21 (1985) 355.MathSciNetGoogle Scholar
  13. [13]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [SPIRES].MATHCrossRefADSGoogle Scholar
  16. [16]
    I. Schnakenburg and P.C. West, Kac-Moody symmetries of IIB supergravity, Phys. Lett. B 517 (2001) 421 [hep-th/0107181] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    A. Kleinschmidt, I. Schnakenburg and P.C. West, Very-extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    F. Riccioni, D. Steele and P. West, The E 11 origin of all maximal supergravities - the hierarchy of field-strengths, JHEP 09 (2009) 095 [arXiv:0906.1177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    N.A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    P.K. Townsend, Membrane tension and manifest IIB S-duality, Phys. Lett. B 409 (1997) 131 [hep-th/9705160] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    M. Cederwall and P.K. Townsend, The manifestly Sl(2,Z)-covariant superstring, JHEP 09 (1997) 003 [hep-th/9709002] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    M. Cederwall and A. Westerberg, World-volume fields, SL(2,Z) and duality: The type IIB 3-brane, JHEP 02 (1998) 004 [hep-th/9710007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    A. Westerberg and N. Wyllard, Towards a manifestly SL(2,Z)-covariant action for the type IIB (p,q) super-five-branes, JHEP 06 (1999) 006 [hep-th/9905019] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualisation of dualities. II: Twisted self-duality of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    G. Dall’Agata, K. Lechner and M. Tonin, D = 10, N = IIB supergravity: Lorentz-invariant actions and duality, JHEP 07 (1998) 017 [hep-th/9806140] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    E.A. Bergshoeff, J. Hartong, P.S. Howe, T. Ortín and F. Riccioni, IIA/IIB Supergravity and Ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    F. Riccioni and P. West, Local E 11, JHEP 04 (2009) 051 [arXiv:0902.4678] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortín, Gauge Theories, Duality Relations and the Tensor Hierarchy, JHEP 04 (2009) 123 [arXiv:0901.2054] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    C.M. Hull and R.A. Reid-Edwards, Gauge Symmetry, T-duality and Doubled Geometry, JHEP 08 (2008) 043 [arXiv:0711.4818] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    C. Albertsson, T. Kimura and R.A. Reid-Edwards, D-branes and doubled geometry, JHEP 04 (2009) 113 [arXiv:0806.1783] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [SPIRES].ADSGoogle Scholar
  38. [38]
    B. de Wit, H. Samtleben and M. Trigiante, Gauging maximal supergravities, Fortsch. Phys. 52 (2004) 489 [hep-th/0311225] [SPIRES].MATHCrossRefADSGoogle Scholar
  39. [39]
    E.A. Bergshoeff and F. Riccioni, D-Brane Wess-Zumino Terms and the Embedding Tensor, in preparation.Google Scholar
  40. [40]
    E. Bergshoeff, P.S. Howe, S. Kerstan and L. Wulff, Kappa-symmetric SL(2,R) covariant D-brane actions, JHEP 10 (2007) 050 [arXiv:0708.2722] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    E.A. Bergshoeff and F. Riccioni, in preparation.Google Scholar
  42. [42]
    J. de Boer, Black Holes and Exotic States talk given at the Crete Conference on Gauge Theories and the Structure of Spacetime, Kolymbari, Greece, September 2010.Google Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of MathematicsKings College LondonStrand LondonU.K.

Personalised recommendations