Advertisement

Journal of High Energy Physics

, 2010:136 | Cite as

D-branes and matrix factorisations in supersymmetric coset models

  • Nicolas Behr
  • Stefan Fredenhagen
Article

Abstract

Matrix factorisations describe B-type boundary conditions in \( \mathcal{N} = 2 \) supersymmetric Landau-Ginzburg models. At the infrared fixed point, they correspond to superconformal boundary states. We investigate the relation between boundary states and matrix factorisations in the Grassmannian Kazama-Suzuki coset models. For the first nonminimal series, i.e. for the models of type SU(3) k /U(2), we identify matrix factorisations for a subset of the maximally symmetric boundary states. This set provides a basis for the RR charge lattice, and can be used to generate (presumably all) other boundary states by tachyon condensation.

Keywords

D-branes Conformal Field Models in String Theory Topological Field Theories Tachyon Condensation 

References

  1. [1]
    E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, hep-th/0403166 [SPIRES].
  3. [3]
    H. Jockers and W. Lerche, Matrix Factorizations, D-branes and their Deformations, Nucl. Phys. Proc. Suppl. 171 (2007) 196 [arXiv:0708.0157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    M. Herbst, K. Hori and D. Page, Phases Of N = 2 Theories In 1 + 1 Dimensions With Boundary, arXiv:0803.2045 [SPIRES].
  5. [5]
    I. Brunner, M. Herbst, W. Lerche and B. Scheuner, Landau-Ginzburg realization of open string TFT, JHEP 11 (2006) 043 [hep-th/0305133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    A. Kapustin and Y. Li, D-branes in topological minimal models: The Landau-Ginzburg approach, JHEP 07 (2004) 045 [hep-th/0306001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    I. Brunner and M.R. Gaberdiel, The matrix factorisations of the D-model, J. Phys. A 38 (2005) 7901 [hep-th/0506208] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    C.A. Keller and S. Rossi, Boundary states, matrix factorisations and correlation functions for the E-models, JHEP 03 (2007) 038 [hep-th/0610175] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    I. Brunner and M.R. Gaberdiel, Matrix factorisations and permutation branes, JHEP 07 (2005) 012 [hep-th/0503207] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    H. Enger, A. Recknagel and D. Roggenkamp, Permutation branes and linear matrix factorisations, JHEP 01 (2006) 087 [hep-th/0508053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    Y. Kazama and H. Suzuki, New N = 2 Superconformal Field Theories and Superstring Compactification, Nucl. Phys. B 321 (1989) 232 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    W. Lerche, C. Vafa and N.P. Warner, Chiral Rings in N = 2 Superconformal Theories, Nucl. Phys. B 324 (1989) 427 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    M. Nozaki, Comments on D-branes in Kazama-Suzuki models and Landau-Ginzburg theories, JHEP 03 (2002) 027 [hep-th/0112221] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    Y. Kazama and H. Suzuki, Characterization of N = 2 Superconformal Models Generated by Coset Space Method, Phys. Lett. B 216 (1989) 112 [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    D. Gepner, Scalar field theory and string compactification, Nucl. Phys. B 322 (1989) 65 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    J. Fuchs and C. Schweigert, Level rank duality of WZW theories and isomorphisms of N = 2 coset models, Ann. Phys. 234 (1994) 102 [hep-th/9307107] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. [17]
    M. Blau, F. Hussain and G. Thompson, Grassmannian Topological Kazama-Suzuki Models and Cohomology, Nucl. Phys. B 488 (1997) 599 [hep-th/9510194] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    S.G. Naculich and H.J. Schnitzer, Superconformal coset equivalence from level-rank duality, Nucl. Phys. B 505 (1997) 727 [hep-th/9705149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    F. Xu, On the equivalence of certain coset conformal field theories, Commun. Math. Phys. 228 (2002) 257 [math/0108045].zbMATHCrossRefADSGoogle Scholar
  20. [20]
    T. Ali, Level-rank duality in Kazama-Suzuki models, hep-th/0201214 [SPIRES].
  21. [21]
    G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422 [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    D. Gepner, Field identification in coset conformal field theories, Phys. Lett. B 222 (1989) 207 [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    A.N. Schellekens and S. Yankielowicz, Extended Chiral Algebras and Modular Invariant Partition Functions, Nucl. Phys. B 327 (1989) 673 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    A.N. Schellekens and S. Yankielowicz, Field identification fixed points in the coset construction, Nucl. Phys. B 334 (1990) 67 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    W. Lerche and J. Walcher, Boundary rings and N = 2 coset models, Nucl. Phys. B 625 (2002) 97 [hep-th/0011107] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    H. Ishikawa and T. Tani, Twisted boundary states in Kazama-Suzuki models, Nucl. Phys. B 678 (2004) 363 [hep-th/0306227] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324 (1989) 581 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    N. Ishibashi, The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett. A 4 (1989) 251 [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    H. Ishikawa, Boundary states in coset conformal field theories, Nucl. Phys. B 629 (2002) 209 [hep-th/0111230] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    H. Ishikawa and T. Tani, Novel construction of boundary states in coset conformal field theories, Nucl. Phys. B 649 (2003) 205 [hep-th/0207177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    S. Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436 [hep-th/0301229] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    J.M. Maldacena, G.W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    K. Gawędzki, Boundary WZW, G/H, G/G and CS theories, Annales Henri Poincaré 3 (2002) 847 [hep-th/0108044] [SPIRES].zbMATHCrossRefGoogle Scholar
  34. [34]
    S. Elitzur and G. Sarkissian, D-branes on a gauged WZW model, Nucl. Phys. B 625 (2002) 166 [hep-th/0108142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    M.R. Gaberdiel and T. Gannon, Boundary states for WZW models, Nucl. Phys. B 639 (2002) 471 [hep-th/0202067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    S. Hosono and A. Tsuchiya, Lie algebra cohomology and N = 2 SCFT based on the GKO construction, Commun. Math. Phys. 136 (1991) 451 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. [37]
    S. Fredenhagen and V. Schomerus, D-branes in coset models, JHEP 02 (2002) 005 [hep-th/0111189] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    A.Y. Alekseev, S. Fredenhagen, T. Quella and V. Schomerus, Non-commutative gauge theory of twisted D-branes, Nucl. Phys. B 646 (2002) 127 [hep-th/0205123] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S. Fredenhagen, D-brane dynamics in curved backgrounds, Ph.D. Thesis, Humboldt University, Berlin Germany (2002), http://edoc.hu-berlin.de/docviews/abstract.php?id=10498.
  40. [40]
    C. Vafa and N.P. Warner, Catastrophes and the Classiffication of Conformal Theories, Phys. Lett. B 218 (1989) 51 [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    P.S. Howe and P.C. West, N = 2 superconformal models, Landau-Ginzburg Hamiltonians and the ϵ expansion, Phys. Lett. B 223 (1989) 377 [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    D. Gepner, Fusion rings and geometry, Commun. Math. Phys. 141 (1991) 381 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  43. [43]
    P. Bouwknegt, P. Dawson and D. Ridout, D-branes on group manifolds and fusion rings, JHEP 12 (2002) 065 [hep-th/0210302] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    P.D. Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer, New York U.S.A. (1999).Google Scholar
  45. [45]
    I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, Academic Press Inc., San Diego U.S.A. (2000).zbMATHGoogle Scholar
  46. [46]
    M. Kontsevich, unpublished.Google Scholar
  47. [47]
    A. Kapustin and Y. Li, D-Branes in Landau-Ginzburg Models and Algebraic Geometry, JHEP 12 (2003) 005 [hep-th/0210296] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, math/0302304.Google Scholar
  49. [49]
    A. Kapustin and Y. Li, Topological Correlators in Landau-Ginzburg Models with Boundaries, Adv. Theor. Math. Phys. 7 (2004) 727 [hep-th/0305136] [SPIRES].MathSciNetGoogle Scholar
  50. [50]
    J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys. 46 (2005) 082305 [hep-th/0412274] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    S.K. Ashok, E. Dell’Aquila and D.-E. Diaconescu, Fractional branes in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 8 (2004) 461 [hep-th/0401135] [SPIRES].zbMATHMathSciNetGoogle Scholar
  52. [52]
    S.K. Ashok, E. Dell’Aquila, D.-E. Diaconescu and B. Florea, Obstructed D-branes in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 8 (2004) 427 [hep-th/0404167] [SPIRES].MathSciNetGoogle Scholar
  53. [53]
    C. Vafa, Topological Landau-Ginzburg models, Mod. Phys. Lett. A 6 (1991) 337 [SPIRES].MathSciNetADSGoogle Scholar
  54. [54]
    S. Govindarajan, H. Jockers, W. Lerche and N.P. Warner, Tachyon condensation on the elliptic curve, Nucl. Phys. B 765 (2007) 240 [hep-th/0512208] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    S. Fredenhagen and V. Schomerus, On boundary RG-flows in coset conformal field theories, Phys. Rev. D 67 (2003) 085001 [hep-th/0205011] [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    C. Bachas and S. Monnier, Defect loops in gauged Wess-Zumino-Witten models, JHEP 02 (2010) 003 [arXiv:0911.1562] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    K. Hori and J. Walcher, D-brane categories for orientifolds: The Landau-Ginzburg case, JHEP 04 (2008) 030 [hep-th/0606179] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  58. [58]
    I. Brunner and M. Herbst, Orientifolds and D-branes in N = 2 gauged linear σ-models, arXiv:0812.2880 [SPIRES].
  59. [59]
    N. Behr and S. Fredenhagen, work in progress.Google Scholar
  60. [60]
    W. Lerche, D. Lüst and N.P. Warner, Duality symmetries in N = 2 Landau-Ginzburg models, Phys. Lett. B 231 (1989) 417 [SPIRES].ADSGoogle Scholar
  61. [61]
    S. Fredenhagen and M.R. Gaberdiel, Generalised N = 2 permutation branes, JHEP 11 (2006) 041 [hep-th/0607095] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  62. [62]
    K. Ito, Quantum Hamiltonian reduction and N = 2 coset models, Phys. Lett. B 259 (1991) 73 [SPIRES].ADSGoogle Scholar
  63. [63]
    K. Ito, N = 2 superconformal CP(n) model, Nucl. Phys. B 370 (1992) 123 [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    D. Nemeschansky and S. Yankielowicz, N = 2 W algebras, Kazama-Suzuki models and Drinfeld-Sokolov reduction, USC-91-005A [SPIRES].
  65. [65]
    L.J. Romans, The N = 2 superW(3) algebra, Nucl. Phys. B 369 (1992) 403 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  66. [66]
    C.-h. Ahn, Explicit construction of N = 2 W(3) current in the N = 2 coset SU(3)/SU(2) × U(1) model, Phys. Lett. B 348 (1995) 77 [hep-th/9410170] [SPIRES].ADSGoogle Scholar
  67. [67]
    W. Lerche and A. Sevrin, On the Landau-Ginzburg realization of topological gravities, Nucl. Phys. B 428 (1994) 259 [hep-th/9403183] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  68. [68]
    D. Nemeschansky and N.P. Warner, Refining the elliptic genus, Phys. Lett. B 329 (1994) 53 [hep-th/9403047] [SPIRES].MathSciNetADSGoogle Scholar
  69. [69]
    P. Fré, L. Girardello, A. Lerda and P. Soriani, Topological first order systems with Landau-Ginzburg interactions, Nucl. Phys. B 387 (1992) 333 [hep-th/9204041] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [SPIRES].MathSciNetADSGoogle Scholar
  71. [71]
    V.B. Petkova and J.B. Zuber, Generalised twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [SPIRES].MathSciNetADSGoogle Scholar
  72. [72]
    I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  73. [73]
    S. Fredenhagen and V. Schomerus, Branes on group manifolds, gluon condensates and twisted K-theory, JHEP 04 (2001) 007 [hep-th/0012164] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  74. [74]
    S. Fredenhagen, D-brane charges in coset models, in preparation.Google Scholar
  75. [75]
    S. Schäfer-Nameki, D-branes in N = 2 coset models and twisted equivariant K- theory, [hep-th/0308058] [SPIRES].
  76. [76]
    S. Schäfer-Nameki, K-theoretical boundary rings in N = 2 coset models, Nucl. Phys. B 706 (2005) 531 [hep-th/0408060] [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    C. Caviezel, S. Fredenhagen and M.R. Gaberdiel, The RR charges of A-type Gepner models, JHEP 01 (2006) 111 [hep-th/0511078] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  78. [78]
    A. Font, L.E. Ibáñez, F. Quevedo, String compactifications and N = 2 superconformal coset constructions, Phys. Lett. B 224 (1989) 79 [SPIRES].ADSGoogle Scholar
  79. [79]
    V. Arnol‘d, V. Vasil‘ev, V. Goryunov and O. Lyashko, Dynamical Systems VI (Singularity Theory I), Encyclopaedia of Mathematical Sciences. Vol. 6, Springer, Berlin Germany (1993).zbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany

Personalised recommendations