Advertisement

Journal of High Energy Physics

, 2010:101 | Cite as

Jet shapes and jet algorithms in SCET

  • Stephen D. Ellis
  • Christopher K. Vermilion
  • Jonathan R. Walsh
  • Andrew Hornig
  • Christopher LeeEmail author
Open Access
Article

Abstract

Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e + e collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes τ α to one-loop order \( \left( {\mathcal{O}\left( {{\alpha_s}} \right)} \right) \) and resum a subset of the large logarithms of τ α needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed τ α distribution of a quark or a gluon jet produced in a 3-jet final state in e + e annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.

Keywords

Jets QCD 

References

  1. [1]
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C 62 (1994) 127 [SPIRES].ADSGoogle Scholar
  2. [2]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].ADSGoogle Scholar
  3. [3]
    J.M. Butterworth, J.R. Ellis and A.R. Raklev, Reconstructing sparticle mass spectra using hadronic decays, JHEP 05 (2007) 033 [hep-ph/0702150] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    G. Brooijmans, High p T hadronic top quark identification. Part I: Jet mass and Ysplitter, ATLAS report ATL-PHYS-CONF-2008-008 [SPIRES].
  5. [5]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    J.M. Butterworth, J.R. Ellis, A.R. Raklev and G.P. Salam, Discovering baryon-number violating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803 [arXiv:0906.0728] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [SPIRES].ADSGoogle Scholar
  9. [9]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [SPIRES].ADSGoogle Scholar
  10. [10]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].ADSGoogle Scholar
  11. [11]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    L.G. Almeida et al., Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [SPIRES].ADSGoogle Scholar
  14. [14]
    S.D. Ellis, Z. Kunszt and D.E. Soper, Jets in hadron colliders at order α s 3, Conf. Proc. C910725V1 (1991) 417 [SPIRES].Google Scholar
  15. [15]
    S.D. Ellis, Z. Kunszt and D.E. Soper, Jets at hadron colliders at order $α s 3 : A Look inside, Phys. Rev. Lett. 69 (1992) 3615 [hep-ph/9208249] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    CDF collaboration, F. Abe et al., A Measurement of jet shapes in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Rev. Lett. 70 (1993) 713 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [SPIRES].Google Scholar
  19. [19]
    G.F. Sterman, Partons, factorization and resummation, hep-ph/9606312 [SPIRES].
  20. [20]
    H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [SPIRES].ADSGoogle Scholar
  22. [22]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].ADSGoogle Scholar
  23. [23]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [SPIRES].ADSGoogle Scholar
  24. [24]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].ADSGoogle Scholar
  25. [25]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [SPIRES].ADSGoogle Scholar
  26. [26]
    C.W. Bauer, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in jet distributions, Phys. Rev. Lett. 91 (2003) 122001 [hep-ph/0212255] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [SPIRES].ADSGoogle Scholar
  28. [28]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [SPIRES].ADSGoogle Scholar
  29. [29]
    C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e + e Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [SPIRES].ADSGoogle Scholar
  30. [30]
    C.W. Bauer, A. Hornig and F.J. Tackmann, Factorization for generic jet production, Phys. Rev. D 79 (2009) 114013 [arXiv:0808.2191] [SPIRES].ADSGoogle Scholar
  31. [31]
    M. Trott, Jets in effective theory: Summing phase space logs, Phys. Rev. D 75 (2007) 054011 [hep-ph/0608300] [SPIRES].ADSGoogle Scholar
  32. [32]
    W. M.-Y. Cheung, M. Luke and S. Zuberi, Phase Space and Jet Definitions in SCET, Phys. Rev. D 80 (2009) 114021 [arXiv:0910.2479] [SPIRES].ADSGoogle Scholar
  33. [33]
    C.W. Bauer and M.D. Schwartz, Event generation from effective field theory, Phys. Rev. D 76 (2007) 074004 [hep-ph/0607296] [SPIRES].ADSGoogle Scholar
  34. [34]
    C.W. Bauer and M.D. Schwartz, Improving jet distributions with effective field theory, Phys. Rev. Lett. 97 (2006) 142001 [hep-ph/0604065] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    G.P. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    A.H. Hoang and I.W. Stewart, Designing Gapped Soft Functions for Jet Production, Phys. Lett. B 660 (2008) 483 [arXiv:0709.3519] [SPIRES].ADSGoogle Scholar
  39. [39]
    Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [SPIRES].ADSGoogle Scholar
  40. [40]
    Y.L. Dokshitzer and B.R. Webber, Power corrections to event shape distributions, Phys. Lett. B 404 (1997) 321 [hep-ph/9704298] [SPIRES].ADSGoogle Scholar
  41. [41]
    C. Lee and G.F. Sterman, Momentum flow correlations from event shapes: Factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [SPIRES].ADSGoogle Scholar
  42. [42]
    C. Lee and G.F. Sterman, Universality of nonperturbative effects in event shapes, hep-ph/0603066 [SPIRES].
  43. [43]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    S. Catani, G. Turnock, B.R. Webber and L. Trentadue, Thrust distribution in e + e annihilation, Phys. Lett. B 263 (1991) 491 [SPIRES].ADSGoogle Scholar
  45. [45]
    S. Catani, G. Turnock and B.R. Webber, Heavy jet mass distribution in e + e annihilation, Phys. Lett. B 272 (1991) 368 [SPIRES].ADSGoogle Scholar
  46. [46]
    M. Dasgupta and G.P. Salam, Resummation of non-global QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.J. Burby and E.W.N. Glover, Resumming the Light Hemisphere Mass and Narrow Jet Broadening distributions in e + e annihilation, JHEP 04 (2001) 029 [hep-ph/0101226] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [SPIRES].ADSGoogle Scholar
  49. [49]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    S. Catani and B.R. Webber, Resummed C-parameter distribution in e + e annihilation, Phys. Lett. B 427 (1998) 377 [hep-ph/9801350] [SPIRES].ADSGoogle Scholar
  51. [51]
    M.D. Schwartz, Resummation and NLO Matching of Event Shapes with Effective Field Theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [SPIRES].ADSGoogle Scholar
  52. [52]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [SPIRES].ADSGoogle Scholar
  53. [53]
    T. Becher and M.D. Schwartz, A Precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    A. Hornig, C. Lee and G. Ovanesyan, Effective Predictions of Event Shapes: Factorized, Resummed and Gapped Angularity Distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    N. Brown and W.J. Stirling, Jet cross-sections at leading double logarithm in e + e annihilation, Phys. Lett. B 252 (1990) 657 [SPIRES].ADSGoogle Scholar
  56. [56]
    A. Banfi, G. Marchesini and G. Smye, Away-from-jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    R.B. Appleby and G.P. Salam, Theory and phenomenology of non-global logarithms, hep-ph/0305232 [SPIRES].
  58. [58]
    Y.L. Dokshitzer and G. Marchesini, On large angle multiple gluon radiation, JHEP 03 (2003) 040 [hep-ph/0303101] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top Jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [SPIRES].ADSGoogle Scholar
  61. [61]
    N. Kidonakis, G. Oderda and G.F. Sterman, NLL resummation for dijet production, hep-ph/9805279 [SPIRES].
  62. [62]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [SPIRES].ADSGoogle Scholar
  63. [63]
    G.P. Salam and G. Soyez, A practical Seedless Infrared-Safe Cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [SPIRES].ADSGoogle Scholar
  66. [66]
    C. Marcantonini and I.W. Stewart, Reparameterization Invariant Collinear Operators, Phys. Rev. D 79 (2009) 065028 [arXiv:0809.1093] [SPIRES].ADSGoogle Scholar
  67. [67]
    C.M. Arnesen, J. Kundu and I.W. Stewart, Constraint equations for heavy-to-light currents in SCET, Phys. Rev. D 72 (2005) 114002 [hep-ph/0508214] [SPIRES].ADSGoogle Scholar
  68. [68]
    G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, hep-ph/9708346 [SPIRES].
  69. [69]
    A.V. Belitsky, G.P. Korchemsky and G.F. Sterman, Energy flow in QCD and event shape functions, Phys. Lett. B 515 (2001) 297 [hep-ph/0106308] [SPIRES].ADSGoogle Scholar
  70. [70]
    A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [SPIRES].ADSGoogle Scholar
  71. [71]
    A. Hornig, C. Lee and G. Ovanesyan, Infrared Safety in Factorized Hard Scattering Cross-Sections, Phys. Lett. B 677 (2009) 272 [arXiv:0901.1897] [SPIRES].ADSGoogle Scholar
  72. [72]
    J.-y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Soft-Collinear Factorization and Zero-Bin Subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [SPIRES].ADSGoogle Scholar
  73. [73]
    A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D 75 (2007) 114017 [hep-ph/0702022] [SPIRES].ADSGoogle Scholar
  74. [74]
    A. Idilbi and T. Mehen, Demonstration of the Equivalence of Soft and Zero-Bin Subtractions, Phys. Rev. D 76 (2007) 094015 [arXiv:0707.1101] [SPIRES].ADSGoogle Scholar
  75. [75]
    C.W. Bauer and A.V. Manohar, Shape function effects in B → X s γ and \( B \to {X_u}l\bar{\nu } \) decays, Phys. Rev. D 70 (2004) 034024 [hep-ph/0312109] [SPIRES].ADSGoogle Scholar
  76. [76]
    S.W. Bosch, B.O. Lange, M. Neubert and G. Paz, Factorization and shape-function effects in inclusive B-meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \bar{B} \to {X_s}\gamma \) decay rate with a cut on photon energy. II: Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [SPIRES].ADSGoogle Scholar
  78. [78]
    C.W. Bauer, C.-W. Chiang, S. Fleming, A.K. Leibovich and I. Low, Resumming the color-octet contribution to radiative Upsilon decay, Phys. Rev. D 64 (2001) 114014 [hep-ph/0106316] [SPIRES].ADSGoogle Scholar
  79. [79]
    S. Fleming, A.K. Leibovich and T. Mehen, Resumming the color octet contribution to e + e J/ψ + X, Phys. Rev. D 68 (2003) 094011 [hep-ph/0306139] [SPIRES].ADSGoogle Scholar
  80. [80]
    S. Catani and M.H. Seymour, The Dipole Formalism for the Calculation of QCD Jet Cross sections at Next-to-Leading Order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [SPIRES].ADSGoogle Scholar
  81. [81]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [SPIRES].ADSGoogle Scholar
  83. [83]
    A.V. Belitsky, Two-loop renormalization of Wilson loop for Drell-Yan production, Phys. Lett. B 442 (1998) 307 [hep-ph/9808389] [SPIRES].ADSGoogle Scholar
  84. [84]
    T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].ADSCrossRefGoogle Scholar
  86. [86]
    C. Balzereit, T. Mannel and W. Kilian, Evolution of the light-cone distribution function for a heavy quark, Phys. Rev. D 58 (1998) 114029 [hep-ph/9805297] [SPIRES].ADSGoogle Scholar
  87. [87]
    M. Neubert, Advanced predictions for moments of the \( \bar{B} \to {X_s}\gamma \) photon spectrum, Phys. Rev. D 72 (2005) 074025 [hep-ph/0506245] [SPIRES].ADSGoogle Scholar
  88. [88]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [SPIRES].ADSCrossRefGoogle Scholar
  89. [89]
    J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [SPIRES].ADSGoogle Scholar
  90. [90]
    N. Kidonakis, G. Oderda and G.F. Sterman, Threshold resummation for dijet cross sections, Nucl. Phys. B 525 (1998) 299 [hep-ph/9801268] [SPIRES].ADSCrossRefGoogle Scholar
  91. [91]
    N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [SPIRES].ADSCrossRefGoogle Scholar
  92. [92]
    Y.L. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form factor, Phys. Lett. B 631 (2005) 118 [hep-ph/0508130] [SPIRES].ADSGoogle Scholar
  93. [93]
    M. Sjodahl, Color evolution of 2 → 3 processes, JHEP 12 (2008) 083 [arXiv:0807.0555] [SPIRES].ADSCrossRefGoogle Scholar
  94. [94]
    M. Sjodahl, Color structure for soft gluon resummation - a general recipe, JHEP 09 (2009) 087 [arXiv:0906.1121] [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  96. [96]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  97. [97]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  98. [98]
    T.T. Jouttenus, Jet Function with a Jet Algorithm in SCET, Phys. Rev. D 81 (2010) 094017 [arXiv:0912.5509] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Stephen D. Ellis
    • 1
  • Christopher K. Vermilion
    • 1
  • Jonathan R. Walsh
    • 1
  • Andrew Hornig
    • 2
  • Christopher Lee
    • 2
    Email author
  1. 1.University of WashingtonSeattleU.S.A.
  2. 2.Theoretical Physics Group, Lawrence Berkeley National Laboratory, and Center for Theoretical PhysicsUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations