Journal of High Energy Physics

, 2010:100 | Cite as

High-energy string-brane scattering: leading eikonal and beyond

  • Giuseppe D’Appollonio
  • Paolo Di Vecchia
  • Rodolfo Russo
  • Gabriele Veneziano
Open Access
Article

Abstract

We extend previous techniques for calculations of transplanckian-energy string-string collisions to the high-energy scattering of massless closed strings from a stack of N Dp-branes in Minkowski spacetime. We show that an effective non-trivial metric emerges from the string scattering amplitudes by comparing them against the semiclassical dynamics of high-energy strings in the extremal p-brane background. By changing the energy, impact parameter and effective open string coupling λ = gN, we are able to explore various interesting regimes and to reproduce classical expectations, including tidal-force excitations, even beyond the leading-eikonal approximation

Keywords

Superstrings and Heterotic Strings D-branes 

References

  1. [1]
    D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies, Phys. Lett. B 197 (1987) 81 [SPIRES].ADSGoogle Scholar
  2. [2]
    D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from Planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [SPIRES].ADSGoogle Scholar
  3. [3]
    D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B 216 (1989) 41 [SPIRES].ADSGoogle Scholar
  4. [4]
    D. Amati, M. Ciafaloni and G. Veneziano, Higher order gravitational deection and soft bremsstrahlung in Planckian energy superstring collisions, Nucl. Phys. B 347 (1990) 550 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at Planckian energies, Nucl. Phys. B 403 (1993) 707 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    B. Sundborg, High-energy asymptotics: the one loop string amplitude and resummation, Nucl. Phys. B 306 (1988) 545 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    I.J. Muzinich and M. Soldate, High-energy unitarity of gravitation and strings, Phys. Rev. D 37 (1988) 359 [SPIRES].ADSGoogle Scholar
  9. [9]
    D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987) 129 [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    P.F. Mende and H. Ooguri, Borel summation of string theory for Planck scale scattering, Nucl. Phys. B 339 (1990) 641 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    P.C. Aichelburg and R.U. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    M. Fabbrichesi, R. Pettorino, G. Veneziano and G.A. Vilkovisky, Planckian energy scattering and surface terms in the gravitational action, Nucl. Phys. B 419 (1994) 147 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    G. Veneziano, A new approach to semiclassical gravitational scattering, in proceeding of 2nd Journée Cosmolgique, H. J. de Vega and N. Sanchez, eds., pg. 322, talk given at 2nd Journee Cosmologique, Paris, France, 2-4 June (1994), World Scientific Publishing Co., (1995).Google Scholar
  14. [14]
    D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational collapse, JHEP 02 (2008) 049 [arXiv:0712.1209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    G. Marchesini and E. Onofri, High energy gravitational scattering: a numerical study, JHEP 06 (2008) 104 [arXiv:0803.0250] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse, JHEP 09 (2008) 023 [arXiv:0804.3321] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse II: a momentum space analysis, JHEP 09 (2008) 024 [arXiv:0805.2973] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    M. Ciafaloni and D. Colferai, S-matrix and quantum tunneling in gravitational collapse, JHEP 11 (2008) 047 [arXiv:0807.2117] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    M. Ciafaloni and D. Colferai, Quantum tunneling and unitarity features of an S-matrix for gravitational collapse, JHEP 12 (2009) 062 [arXiv:0909.4523] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP 06 (2002) 057 [gr-qc/0203093] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    H. Yoshino and Y. Nambu, Black hole formation in the grazing collision of high- energy particles, Phys. Rev. D 67 (2003) 024009 [gr-qc/0209003] [SPIRES].ADSGoogle Scholar
  23. [23]
    S.B. Giddings and V.S. Rychkov, Black holes from colliding wavepackets, Phys. Rev. D 70 (2004) 104026 [hep-th/0409131] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    G. Veneziano, String-theoretic unitary S-matrix at the threshold of black-hole production, JHEP 11 (2004) 001 [hep-th/0410166] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S.B. Giddings, Locality in quantum gravity and string theory, Phys. Rev. D 74 (2006) 106006 [hep-th/0604072] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    M.J. Duff, Quantum tree graphs and the Schwarzschild solution, Phys. Rev. D 7 (1973) 2317 [SPIRES].ADSGoogle Scholar
  27. [27]
    M.J. Duff, Quantum corrections to the Schwarzschild solution, Phys. Rev. D 9 (1974) 1837 [SPIRES].ADSGoogle Scholar
  28. [28]
    J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  29. [29]
    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    M.R. Garousi and R.C. Myers, Superstring scattering from D-branes, Nucl. Phys. B 475 (1996) 193 [hep-th/9603194] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    P. Di Vecchia et al., Classical p-branes from boundary state, Nucl. Phys. B 507 (1997) 259 [hep-th/9707068] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M. Bertolini et al., Is a classical description of stable non-BPS D-branes possible?, Nucl. Phys. B 590 (2000) 471 [hep-th/0007097] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    M. Fabbrichesi and R. Iengo, Scattering of a massless particle by the ‘sun’ in superstring theory, Phys. Lett. B 264 (1991) 319 [SPIRES].ADSGoogle Scholar
  34. [34]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) pg. 531.Google Scholar
  35. [35]
    I.R. Klebanov and L. Thorlacius, The size of p-branes, Phys. Lett. B 371 (1996) 51 [hep-th/9510200] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    A. Hashimoto and I.R. Klebanov, Scattering of strings from D-branes, Nucl. Phys. Proc. Suppl. 55B (1997) 118 [hep-th/9611214] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  37. [37]
    M. Ademollo et al., Unified dual model for interacting open and closed strings, Nucl. Phys. B 77 (1974) 189 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    H.D.I. Abarbanel and C. Itzykson, Relativistic eikonal expansion, Phys. Rev. Lett. 23 (1969) 53 [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    M. Levy and J. Sucher, Eikonal approximation in quantum field theory, Phys. Rev. 186 (1969) 1656 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    P. Di Vecchia and A. Liccardo, D-branes in string theory. 1., NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 556 (2000) 1, [hep-th/9912161] [SPIRES].Google Scholar
  41. [41]
    A. Pasquinucci, On the scattering of gravitons on two parallel D-branes, Mod. Phys. Lett. A 12 (1997) 1537 [hep-th/9703066] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    S. Lee and S.-J. Rey, Absorption and recoil of fundamental string by D-string, Nucl. Phys. B 508 (1997) 107 [hep-th/9706115] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    V. Alessandrini, D. Amati and B. Morel, The asymptotic behaviour of the dual Pomeron amplitude, Nuovo Cim. A 7 (1972) 797 [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    E. Gava, R. Iengo and C.-J. Zhu, Quantum gravity corrections from superstring theory, Nucl. Phys. B 323 (1989) 585 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    R. Iengo and K. Lechner, Schwarzschild like corrections to gravity from superstrings at one loop, Nucl. Phys. B 335 (1990) 221 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    S.B. Giddings and M. Srednicki, High-energy gravitational scattering and black hole resonances, Phys. Rev. D 77 (2008) 085025 [arXiv:0711.5012] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.B. Giddings and R.A. Porto, The gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [SPIRES].ADSGoogle Scholar
  48. [48]
    G. Veneziano, Strings and gravitation, in proceedings of 5th Marcel Grossmann Meeting “Recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories”, D.G. Blair and M.J. Buckingham eds., Perth (1988) pg. 173.Google Scholar
  49. [49]
    H.J. de Vega and N.G. Sanchez, Quantum string scattering in the Aichelburg-Sexl geometry, Nucl. Phys. B 317 (1989) 706 [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    G.T. Horowitz and A.R. Steif, Strings in strong gravitational fields, Phys. Rev. D 42 (1990) 1950 [SPIRES].ADSGoogle Scholar
  51. [51]
    S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [SPIRES].ADSGoogle Scholar
  52. [52]
    M. Blau, J.M. Figueroa-O’Farrill and G. Papadopoulos, Penrose limits, supergravity and brane dynamics, Class. Quant. Grav. 19 (2002) 4753 [hep-th/0202111] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  53. [53]
    J.L.F. Barbon, D-brane form factors at high energy, Phys. Lett. B 382 (1996) 60 [hep-th/9601098] [SPIRES].MathSciNetADSGoogle Scholar
  54. [54]
    C. Bachas and B. Pioline, High-energy scattering on distant branes, JHEP 12 (1999) 004 [hep-th/9909171] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    W. Black and C. Monni, work in progress.Google Scholar
  56. [56]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  57. [57]
    S. Giusto, J.F. Morales and R. Russo, D1D5 microstate geometries from string amplitudes, JHEP 03 (2010) 130 [arXiv:0912.2270] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    W. Black, R. Russo and D. Turton, The supergravity fields for a D-brane with a travelling wave from string amplitudes, Phys. Lett. B 694 (2010) 246 [arXiv:1007.2856] [SPIRES].ADSGoogle Scholar
  59. [59]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  60. [60]
    T. Huber and D. Maître, HypExp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [SPIRES].MATHCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Giuseppe D’Appollonio
    • 1
    • 2
  • Paolo Di Vecchia
    • 3
    • 4
  • Rodolfo Russo
    • 5
  • Gabriele Veneziano
    • 6
    • 7
  1. 1.Dipartimento di FisicaUniversità di Cagliari and INFNMonserratoItaly
  2. 2.Laboratoire de Physique Théorique de L’Ecole Normale SupérieureParis cedexFrance
  3. 3.The Niels Bohr InstituteCopenhagenDenmark
  4. 4.NorditaStockholmSweden
  5. 5.Queen Mary University of LondonLondonUnited Kingdom
  6. 6.Collége de FranceParisFrance
  7. 7.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations