Journal of High Energy Physics

, 2010:92 | Cite as

Universal thermal and electrical conductivity from holography

Article

Abstract

It is known from earlier work of Iqbal, Liu [1] that the boundary transport coefficients such as electrical conductivity (at vanishing chemical potential), shear viscosity etc. at low frequency and finite temperature can be expressed in terms of geometrical quantities evaluated at the horizon. In the case of electrical conductivity, at zero chemical potential gauge field fluctuation and metric fluctuation decouples, resulting in a trivial flow from horizon to boundary. In the presence of chemical potential, the story becomes complicated due to the fact that gauge field and metric fluctuation can no longer be decoupled. This results in a nontrivial flow from horizon to boundary. Though horizon conductivity can be expressed in terms of geometrical quantities evaluated at the horizon, there exist no such neat result for electrical conductivity at the boundary. In this paper we propose an expression for boundary conductivity expressed in terms of geometrical quantities evaluated at the horizon and thermodynamic quantities. We also consider the theory at finite cutoff recently constructed in [2], at radius rc outside the horizon and give an expression for cutoff dependent electrical conductivity (σ(rc)), which interpolates smoothly between horizon conductivity σH(rcrh) and boundary conductivity σB(rc → ∞). Using the results about the conductivity we gain much insight into the universality of thermal conductivity to viscosity ratio proposed in [3].

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  2. [2]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian Approach to Fluid/Gravity Duality, arXiv:1006.1902 [SPIRES].
  3. [3]
    S. Jain, Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography, JHEP 06 (2010) 023 [arXiv:0912.2719] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    S. Jain, Holographic electrical and thermal conductivity in strongly coupled gauge theory with multiple chemical potentials, JHEP 03 (2010) 101 [arXiv:0912.2228] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Density Dependence of Transport Coefficients from Holographic Hydrodynamics, Prog. Theor. Phys. 120 (2008) 833 [arXiv:0806.4460] [SPIRES].MATHCrossRefADSGoogle Scholar
  11. [11]
    K. Maeda, M. Natsuume and T. Okamura, Dynamic critical phenomena in the AdS/CFT duality, Phys. Rev. D 78 (2008) 106007 [arXiv:0809.4074] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    S. Jain, S. Mukherji and S. Mukhopadhyay, Notes on R-charged black holes near criticality and gauge theory, JHEP 11 (2009) 051 [arXiv:0906.5134] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [SPIRES].ADSGoogle Scholar
  14. [14]
    P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].ADSGoogle Scholar
  15. [15]
    K. Behrndt, M. Cvetič and W.A. Sabra, Non-extreme black holes of five dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    R.B. Mann, Lifshitz Topological Black Holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [SPIRES].ADSGoogle Scholar
  20. [20]
    G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [SPIRES].ADSGoogle Scholar
  21. [21]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  22. [22]
    D.-W. Pang, A Note on Black Holes in Asymptotically Lifshitz Spacetime, arXiv:0905.2678 [SPIRES].
  23. [23]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].ADSGoogle Scholar
  24. [24]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [SPIRES].ADSGoogle Scholar
  25. [25]
    R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz Black Hole in Four Dimensional R 2 Gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    S.-J. Sin, S.-S. Xu and Y. Zhou, Holographic Superconductor for a Lifshitz fixed point, arXiv:0909.4857 [SPIRES].
  27. [27]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Dilaton gravity approach to three dimensional Lifshitz black hole, arXiv:0910.4428 [SPIRES].
  28. [28]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    W. Li, T. Nishioka and T. Takayanagi, Some No-go Theorems for String Duals of Non-relativistic Lifshitz-like Theories, JHEP 10 (2009) 015 [arXiv:0908.0363] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Holographic Superconductors with Lifshitz Scaling, J. Phys. A 43 (2010) 065401 [arXiv:0908.2611] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    D.-W. Pang, On Charged Lifshitz Black Holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    D.-W. Pang, Conductivity and Diffusion Constant in Lifshitz Backgrounds, JHEP 01 (2010) 120 [arXiv:0912.2403] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    B. Hassanain and M. Schvellinger, Towards ’t Hooft parameter corrections to charge transport in strongly-coupled plasma, JHEP 10 (2010) 068 [arXiv:1006.5480] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    G.L. Cardoso and V. Grass, On five-dimensional non-extremal charged black holes and FRW cosmology, Nucl. Phys. B 803 (2008) 209 [arXiv:0803.2819] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institute of PhysicsSachivalaya Marg, BhubaneswarOdishaIndia

Personalised recommendations