Journal of High Energy Physics

, 2010:81 | Cite as

Holography and AdS4 self-gravitating dyons

Article

Abstract

We present a self-gravitating dyon solution of the Einstein-Yang-Mills-Higgs equations of motion in asymptotically AdS space. The back reaction of gauge and Higgs fields on the space-time geometry leads to the metric of an asymptotically AdS black hole. Using the gauge/gravity correspondence we analyze relevant properties of the finite temperature quantum field theory defined on the boundary. In particular we identify an order operator, characterize a phase transition of the dual theory on the border and also compute the expectation value of the finite temperature Wilson loop.

Keywords

Spontaneous Symmetry Breaking Solitons Monopoles and Instantons AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].
  9. [9]
    A.R. Lugo, E.F. Moreno and F.A. Schaposnik, Holographic phase transition from dyons in an AdS black hole background, JHEP 03 (2010) 013 [arXiv:1001.3378] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A.R. Lugo and F.A. Schaposnik, Monopole and dyon solutions in AdS space, Phys. Lett. B 467 (1999) 43 [hep-th/9909226] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    A.R. Lugo, E.F. Moreno and F.A. Schaposnik, Monopole solutions in AdS space, Phys. Lett. B 473 (2000) 35 [hep-th/9911209] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    A. Lue and E.J. Weinberg, Magnetic monopoles near the black hole threshold, Phys. Rev. D 60 (1999) 084025 [hep-th/9905223] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    A. Lue and E.J. Weinberg, Gravitational properties of monopole spacetimes near the black hole threshold, Phys. Rev. D 61 (2000) 124003 [hep-th/0001140] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    J.J. van der Bij and E. Radu, Magnetic charge, angular momentum and negative cosmological constant, Int. J. Mod. Phys. A 18 (2003) 2379 [hep-th/0210185] [SPIRES].ADSGoogle Scholar
  15. [15]
    E. Radu and D.H. Tchrakian, New axially symmetric Yang-Mills-Higgs solutions with negative cosmological constant, Phys. Rev. D 71 (2005) 064002 [hep-th/0411084] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES].
  19. [19]
    R.G. Leigh and A.C. Petkou, Holography of the N =1 higher-spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    R.G. Leigh and A.C. Petkou, SL(2,Z) action on three-dimensional CFTs and holography, JHEP 12 (2003) 020 [hep-th/0309177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    D. Marolf and S.F. Ross, Boundary conditions and new dualities: Vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    K. Maeda, M. Natsuume and T. Okamura, On two pieces of folklore in the AdS/CFT duality, Phys. Rev. D 82 (2010) 046002 [arXiv:1005.2431] [SPIRES].ADSGoogle Scholar
  23. [23]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MATHMathSciNetGoogle Scholar
  27. [27]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    W.H. Press, S.A. Teukolsky and W.V. Vetterlink, Numerical Recipes: The art of Scientific Computing, Cambridge University Press, Cambridge U.K. (1992).Google Scholar
  29. [29]
    J . Sonnenschein, What does the string/gauge correspondence teach us about Wilson loops?, hep-th/0003032 [SPIRES].
  30. [30]
    E.H. Fradkin and F.A. Schaposnik, Chern-Simons gauge theories, confinement and the chiral spin liquid, Phys. Rev. Lett. 66 (1991) 276 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Physics DepartmentNortheastern UniversityBostonU.S.A.

Personalised recommendations