Advertisement

Journal of High Energy Physics

, 2010:42 | Cite as

Group theory of non-abelian vortices

  • Minoru Eto
  • Toshiaki Fujimori
  • Sven Bjarke Gudnason
  • Yunguo Jiang
  • Kenichi Konishi
  • Muneto Nitta
  • Keisuke Ohashi
Article

Abstract

We investigate the structure of the moduli space of multiple BPS non-Abelian vortices in U(N) gauge theory with N fundamental Higgs fields, focusing our attention on the action of the exact global (color-flavor diagonal) SU(N) symmetry on it. The moduli space of a single non-Abelian vortex, \( \mathbb{C}{P^{N - 1}} \), is spanned by a vector in the fundamental representation of the global SU(N) symmetry. The moduli space of winding-number k vortices is instead spanned by vectors in the direct-product representation: they decompose into the sum of irreducible representations each of which is associated with a Young tableau made of k boxes, in a way somewhat similar to the standard group composition rule of SU(N) multiplets. The Kähler potential is exactly determined in each moduli subspace, corresponding to an irreducible SU(N) orbit of the highest-weight configuration.

Keywords

Duality in Gauge Field Theories Solitons Monopoles and Instantons Confinement Nonperturbative Effects 

References

  1. [1]
    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nonabelian superconductors: vortices and confinement in N =2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    M. Shifman and A. Yung, Non-abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    A. Gorsky, M. Shifman and A. Yung, Non-abelian Meissner effect in Yang-Mills theories at weak coupling, Phys. Rev. D 71 (2005) 045010 [hep-th/0412082] [SPIRES].ADSGoogle Scholar
  7. [7]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, All exact solutions of a 1/4 Bogomol’nyi-Prasad-Sommerfield equation, Phys. Rev. D 71 (2005) 065018 [hep-th/0405129] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    T. Fujimori, G. Marmorini, M. Nitta, K. Ohashi and N. Sakai, The moduli space metric for well-separated non-abelian vortices, Phys. Rev. D 82 (2010) 065005 [arXiv:1002.4580] [SPIRES]. ADSGoogle Scholar
  11. [11]
    J.M. Baptista, On the L 2 -metric of vortex moduli spaces, arXiv:1003.1296 [SPIRES].
  12. [12]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Manifestly supersymmetric effective Lagrangians on BPS solitons, Phys. Rev. D 73 (2006) 125008 [hep-th/0602289] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    K. Hashimoto and D. Tong, Reconnection of non-abelian cosmic strings, JCAP 09 (2005) 004 [hep-th/0506022] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    R. Auzzi, M. Shifman and A. Yung, Composite non-abelian flux tubes in N =2 SQCD, Phys. Rev. D 73 (2006) 105012 [Erratum ibid. D 76 (2007) 109901] [hep-th/0511150] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    M. Eto et al., Non-abelian vortices of higher winding numbers, Phys. Rev. D 74 (2006) 065021 [hep-th/0607070] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    M. Eto et al., Universal reconnection of non-Abelian cosmic strings, Phys. Rev. Lett. 98 (2007) 091602 [hep-th/0609214] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    M. Eto et al., Non-abelian duality from vortex moduli: a dual model of color-confinement, Nucl. Phys. B 780 (2007) 161 [hep-th/0611313] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    R. Auzzi, S. Bolognesi and M. Shifman, Higher winding strings and confined monopoles in N =2 SQCD, Phys. Rev. D 81 (2010) 085011 [arXiv:1001.1903] [SPIRES].ADSGoogle Scholar
  19. [19]
    N. Seiberg and E. Witten, Monopole condensation, and confinement in N =2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N =2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    D. Dorigoni, K. Konishi and K. Ohashi, Non-abelian vortices with product moduli, Phys. Rev. D 79 (2009) 045011 [arXiv:0801.3284] [SPIRES].ADSGoogle Scholar
  22. [22]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyper-Kähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [SPIRES].MATHCrossRefADSGoogle Scholar
  23. [23]
    M.A. Luty and W. Taylor, Varieties of vacua in classical supersymmetric gauge theories, Phys. Rev. D 53 (1996) 3399 [hep-th/9506098] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    M. Bordemann, M. Forger and H. Romer, Homogeneous Kähler manifolds: paving the way towards new supersymmetric σ-models, Commun. Math. Phys. 102 (1986) 605 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  25. [25]
    M. Eto, M. Nitta and N. Sakai, Effective theory on non-abelian vortices in six dimensions, Nucl. Phys. B 701 (2004) 247 [hep-th/0405161] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    A.C.W. Kotcheff and G.M. Shore, Kähler σ-models from supersymmetric gauge theories, Int. J. Mod. Phys. A4 (1989) 4391 [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    M. Nitta, Moduli space of global symmetry in N =1 supersymmetric theories and the quasi-Nambu-Goldstone bosons, Int. J. Mod. Phys. A 14 (1999) 2397 [hep-th/9805038] [SPIRES]. MathSciNetADSGoogle Scholar
  28. [28]
    M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai, Domain walls with non-abelian clouds, Phys. Rev. D 77 (2008) 125008 [arXiv:0802.3135] [SPIRES].ADSGoogle Scholar
  29. [29]
    M. Eto et al., Non-abelian vortices in SO(N) and USp(N) gauge theories, JHEP 06 (2009) 004 [arXiv:0903.4471] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Structure of nonlinear realization in supersymmetric theories, Phys. Lett. B 138 (1984) 94 [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Nonlinear realization in supersymmetric theories, Prog. Theor. Phys. 72 (1984) 313 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  32. [32]
    M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Nonlinear realization in supersymmetric theories. 2, Prog. Theor. Phys. 72 (1984) 1207 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    K. Itoh, T. Kugo and H. Kunitomo, Supersymmetric nonlinear realization for arbitrary Kählerian coset space G/H, Nucl. Phys. B 263 (1986) 295 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    S.B. Gudnason, Y. Jiang and K. Konishi, Non-abelian vortex dynamics: effective world-sheet action, JHEP 08 (2010) 012 [arXiv:1007.2116] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    W. Buchmüller and U. Ellwanger, Kähler potentials for supersymmetric σ-models with broken central charges, Phys. Lett. B 166 (1986) 325 [SPIRES].ADSGoogle Scholar
  36. [36]
    M. Nitta, Auxiliary field methods in supersymmetric nonlinear σ-models, Nucl. Phys. B 711 (2005) 133 [hep-th/0312025] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    M. Shifman and A. Yung, Non-Abelian semilocal strings in N =2 supersymmetric QCD, Phys. Rev. D 73 (2006) 125012 [hep-th/0603134] [SPIRES].ADSGoogle Scholar
  38. [38]
    M. Eto et al., On the moduli space of semilocal strings and lumps, Phys. Rev. D 76 (2007) 105002 [arXiv:0704.2218] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    M. Eto et al., Constructing non-abelian vortices with arbitrary gauge groups, Phys. Lett. B 669 (2008) 98 [arXiv:0802.1020] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    L. Ferretti, S.B. Gudnason and K. Konishi, Non-abelian vortices and monopoles in SO(N) theories, Nucl. Phys. B 789 (2008) 84 [arXiv:0706.3854] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    M. Eto, T. Fujimori, S.B. Gudnason, M. Nitta and K. Ohashi, SO and USp Kähler and hyper-Kähler quotients and lumps, Nucl. Phys. B 815 (2009) 495 [arXiv:0809.2014] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    S.B. Gudnason and K. Konishi, Low-energy U(1) × USp(2M) gauge theory from simple high-energy gauge group, Phys. Rev. D 81 (2010) 105007 [arXiv:1002.0850] [SPIRES].ADSGoogle Scholar
  43. [43]
    H. Nakajima, Lectures on hilbert schemes of points on surfaces, University Lecture Series, American Mathematical Society, Providence U.S.A. (1999).Google Scholar
  44. [44]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831[hep-th/0206161] [SPIRES].MathSciNetGoogle Scholar
  45. [45]
    M. Eto et al., Statistical mechanics of vortices from D-branes and T -duality, Nucl. Phys. B 788 (2008) 120 [hep-th/0703197] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Minoru Eto
    • 1
  • Toshiaki Fujimori
    • 2
    • 3
    • 4
  • Sven Bjarke Gudnason
    • 3
    • 4
  • Yunguo Jiang
    • 3
    • 4
  • Kenichi Konishi
    • 3
    • 4
  • Muneto Nitta
    • 5
  • Keisuke Ohashi
    • 6
  1. 1.Mathematical Physics LaboratoryNishina Center, RIKENSaitamaJapan
  2. 2.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  3. 3.INFNPisaItaly
  4. 4.Department of Physics,“E. Fermi”University of PisaPisaItaly
  5. 5.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan
  6. 6.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations