Journal of High Energy Physics

, 2010:39 | Cite as

Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order

  • M. Bauer
  • F. Goertz
  • U. Haisch
  • T. Pfoh
  • S. Westhoff
Article

Abstract

We calculate the \( t\overline t \) forward-backward asymmetry, AtFB, in Randall-Sundrum (RS) models taking into account the dominant next-to-leading order (NLO) corrections in QCD. At Born level we include the exchange of Kaluza-Klein (KK) gluons and photons, the Z boson and its KK excitations, as well as the Higgs boson, whereas beyond the leading order (LO) we consider the interference of tree-level KK-gluon exchange with one-loop QCD box diagrams and the corresponding bremsstrahlungs corrections. We find that the strong suppression of LO effects, that arises due to the elementary nature and the mostly vector-like couplings of light quarks, is lifted at NLO after paying the price of an additional factor of αs/(4π). In spite of this enhancement, the resulting RS corrections in AtFB remain marginal, leaving the predicted asymmetry SM-like. As our arguments are solely based on the smallness of the axial-vector couplings of light quarks to the strong sector, our findings are model-independent and apply to many scenarios of new physics that address the flavor problem via geometrical sequestering.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

References

  1. [1]
    Tevatron Electroweak Working Group and CDF and DØ collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].
  2. [2]
    CDF collaboration, E. Thomson et al., Combination of Top Pair Production Cross Section Results, Conference Note 9913, October 19, 2009, http://www-cdf.fnal.gov/physics/new/top/2009/xsection/ttbar combined 46invfb/.
  3. [3]
    DØ collaboration, Combination and interpretation of tt(bar) cross section measurements with the D0 detector, Conference Note 5907-CONF, March 12, 2009, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T79/.
  4. [4]
    CDF collaboration, T. Aaltonen et al., Search for resonant \( t\overline t \) production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 - TeV \), Phys. Rev. Lett. 100 (2008) 231801 [arXiv:0709.0705] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    CDF collaboration, T. Aaltonen et al., Limits on the production of narrow \( t\overline t \) resonances in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. D 77 (2008) 051102 [arXiv:0710.5335] [SPIRES].ADSGoogle Scholar
  6. [6]
    DØ collaboration, V.M. Abazov et al., Search for \( t\overline t \) resonances in the lepton plus jets final state in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Lett. B 668 (2008) 98 [arXiv:0804.3664] [SPIRES].ADSGoogle Scholar
  7. [7]
    A. Bridgeman, Measurement of the \( t\overline t \) differential cross section, \( {{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.} \) , in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\,TeV \), FERMILAB-THESIS-2008-50.Google Scholar
  8. [8]
    CDF collaboration, T. Aaltonen et al., First Measurement of the \( t\overline t \) Differential Cross Section \( {{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.} \) in c Collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv: 0903.2850] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    T.A. Schwarz, Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV, FERMILAB-THESIS-2006-51, UMI-32-38081.Google Scholar
  10. [10]
    DØ collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\overline p \) Collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    CDF collaboration, G. Strycker et al., Measurement of the Forward-Backward Asymmetry in Top Pair Production in 3.2/fb of \( p\overline p \) Collisions at \( \sqrt {s} = 1.96\,TeV \), CDF/ANAL/TOP/PUBLIC/9724Note, March 17, 2009, http://www-cdf.fnal.gov/physics/new/top/2009/tprop/Afb/.
  13. [13]
    CDF collaboration, G. Strycker et al., Measurement of the Inclusive Forward-Backward Asymmetry and its Rapidity Dependence A fb(|Δy|) of tt Production in 5.3/fb of Tevatron Data, CDF/ANAL/TOP/PUBLIC/10224Note, July 14, 2010, http://www-cdf.fnal.gov/physics/new/top/2010/tprop/Afb/.
  14. [14]
    DØ collaboration, Measurement of the forward-backward production asymmetry of t and \( \overline t \) quarks in \( p\overline p \to t\overline t \) events, Conference Note 6062-CONF, July 23, 2010, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T90/.
  15. [15]
    J.H. Kühn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    J.H. Kühn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [SPIRES].ADSGoogle Scholar
  17. [17]
    O. Antunano, J.H. Kühn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].ADSGoogle Scholar
  18. [18]
    L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [SPIRES].ADSGoogle Scholar
  19. [19]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, arXiv:0906.0604 [SPIRES].
  22. [22]
    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].ADSGoogle Scholar
  23. [23]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].ADSGoogle Scholar
  24. [24]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].ADSGoogle Scholar
  25. [25]
    P.H. Frampton, J. Shu and K. Wang, A xigluon as Possible Explanation for \( p\overline p \to t\overline t \) Forward-Backward Asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    J. Shu, T.M.P. Tait and K. Wang, Explorations of the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].ADSGoogle Scholar
  27. [27]
    A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].ADSGoogle Scholar
  28. [28]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].ADSGoogle Scholar
  29. [29]
    D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].ADSGoogle Scholar
  30. [30]
    J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].ADSGoogle Scholar
  31. [31]
    V. Barger, W.-Y. Keung and C.-T. Yu, Asymmetric Left-Right Model and the Top Pair Forward-Backward Asymmetry, Phys. Rev. D 81 (2010) 113009 [arXiv:1002.1048] [SPIRES]. ADSGoogle Scholar
  32. [32]
    Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-Backward Asymmetry of Top Quark Pair Production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].ADSGoogle Scholar
  33. [33]
    B. Xiao, Y.-k. Wang and S.-h. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Z model at \( \mathcal{O}\left( {\alpha_s^2{\alpha_X}} \right) \), Phys. Rev. D 82 (2010) 034026 [arXiv:1006.2510] [SPIRES].ADSGoogle Scholar
  34. [34]
    R.S. Chivukula, E.H. Simmons and C.P. Yuan, A xigluons cannot explain the observed top quark forward-backward asymmetry, arXiv:1007.0260 [SPIRES].
  35. [35]
    P. Ferrario and G. Rodrigo, Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders, Phys. Rev. D 78 (2008) 094018 [arXiv:0809.3354] [SPIRES].ADSGoogle Scholar
  36. [36]
    P. Ferrario and G. Rodrigo, Heavy colored resonances in top-antitop + jet at the LHC, JHEP 02 (2010) 051 [arXiv:0912.0687] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  39. [39]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].ADSGoogle Scholar
  40. [40]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].ADSGoogle Scholar
  42. [42]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    S.J. Huber and Q. Shafi, Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].ADSGoogle Scholar
  46. [46]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].ADSGoogle Scholar
  48. [48]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor Physics in the Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].ADSGoogle Scholar
  51. [51]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, Δ F=2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    M. Bauer, S. Casagrande, L. Gründer, U. Haisch and M. Neubert, Little Randall-Sundrum models: ϵK strikes again, Phys. Rev. D 79 (2009) 076001 [arXiv:0811.3678] [SPIRES].ADSGoogle Scholar
  53. [53]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial Randall-Sundrum Model: from Precision Tests to Higgs Physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    F.A. Berends, K.J.F. Gaemers and R. Gastmans, α3 -contribution to the angular asymmetry in e + e μ + μ , Nucl. Phys. B 63 (1973) 381 [SPIRES].ADSGoogle Scholar
  55. [55]
    F.A. Berends, R. Kleiss, S. Jadach and Z. Was, QED Radiative Corrections to Electron-Positron Annihilation into Heavy Fermions, Acta Phys. Polon. B 14 (1983) 413 [SPIRES].Google Scholar
  56. [56]
    T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [SPIRES].CrossRefADSMATHGoogle Scholar
  57. [57]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    J. Campbell and R.K. Ellis, MCFM — A Monte Carlo for FeMtobarn processes at Hadron Colliders, http://mcfm.fnal.gov.
  60. [60]
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    N. Kidonakis and R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].ADSGoogle Scholar
  62. [62]
    U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [SPIRES].ADSGoogle Scholar
  63. [63]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, T hreshold expansion at order α4 S for the \( t\overline t \) invariant mass distribution at hadron colliders, Phys. Lett. B 687 (2010) 331 [arXiv:0912.3375] [SPIRES].ADSGoogle Scholar
  64. [64]
    W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].CrossRefADSMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • M. Bauer
    • 1
  • F. Goertz
    • 1
  • U. Haisch
    • 1
  • T. Pfoh
    • 1
  • S. Westhoff
    • 1
  1. 1.Institut für Physik (THEP)Johannes Gutenberg-UniversitätMainzGermany

Personalised recommendations