Journal of High Energy Physics

, 2010:34 | Cite as

Aging and holography

  • Juan I. Jottar
  • Robert G. Leigh
  • Djordje Minic
  • Leopoldo A. Pando Zayas


Aging phenomena are examples of ‘non-equilibrium criticality’ and can be exemplified by systems with Galilean and scaling symmetries but no time translation invariance. We realize aging holographically using a deformation of a non-relativistic version of gauge/gravity duality. Correlation functions of scalar operators are computed using holographic real-time techniques, and agree with field theory expectations. At least in this setup, general aging phenomena are reproduced holographically by complexifying the bulk space-time geometry, even in Lorentzian signature.


AdS-CFT Correspondence Conformal Field Models in String Theory Quantum Dissipative Systems 


  1. [1]
    M. Henkel and M. Pleimling, Ageing and dynamical scaling far from equilibrium, vol. 2 of Nonequilibrium phase transitions, Theoretical and Mathematical Physics, Springer (2010).Google Scholar
  2. [2]
    M. Henkel and M. Pleimling, Local scale-invariance in disordered systems, cond-mat/0703466 [SPIRES].
  3. [3]
    D. Minic and M. Pleimling, Non-relativistic AdS/CFT and Aging/Gravity Duality, Phys. Rev. E 78 (2008) 061108 [arXiv:0807.3665] [SPIRES].ADSGoogle Scholar
  4. [4]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    C. Duval, G.W. Gibbons and P. Horvathy, Celestial Mechanics, Conformal Structures and Gravitational Waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    C. Duval, M. Hassaine and P.A. Horvathy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].zbMATHMathSciNetADSCrossRefGoogle Scholar
  9. [9]
    A.J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43 (1994) 357 [cond-mat/9501089] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    L.F. Cugliandolo, Dynamics of glassy systems, in Slow Relaxation and non equilibrium dynamics in condensed matter, Les Houches session 77 July 2002, J-L. Barrat, J. Dalibard, J. Kurchan, M.V. Feigel’man eds., Springer, (2003) [cond-mat/0210312].
  11. [11]
    M. Henkel, Schrödinger invariance in strongly anisotropic critical systems, J. Stat. Phys. 75 (1994) 1023 [hep-th/9310081] [SPIRES].zbMATHADSCrossRefGoogle Scholar
  12. [12]
    M. Henkel, Phenomenology of local scale invariance: From conformal invariance to dynamical scaling, Nucl. Phys. B 641 (2002) 405 [hep-th/0205256] [SPIRES].MathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Henkel and M. Pleimling, Ageing in disordered magnets and local scale-invariance, Europhys. Lett. 76 (2006) 561 [cond-mat/0607614] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    M. Henkel, M. Pleimling, and R. Sanctuary, eds., Ageing and the Glass Transition, No. 716 in Lecture Notes in Physics, Springer (2007).Google Scholar
  15. [15]
    M. Henkel and M. Pleimling, Local scale invariance as dynamical space-time symmetry in phase-ordering kinetics, Phys. Rev. E 68 (2003) 065101 [cond-mat/0302482] [SPIRES].ADSGoogle Scholar
  16. [16]
    M. Henkel, A. Picone and M. Pleimling, Two-time autocorrelation function in phase-ordering kinetics from local scale-invariance, Europhys. Lett. 68 (2004) 191 [cond-mat/0404464] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    A. Volovich and C. Wen, Correlation Functions in Non-Relativistic Holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    R.G. Leigh and N.N. Hoang, Fermions and the Sch/nrCFT Correspondence, JHEP 03 (2010) 027 [arXiv:0909.1883] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    R.G. Leigh and N.N. Hoang, Real-Time Correlators and Non-Relativistic Holography, JHEP 11 (2009) 010 [arXiv:0904.4270] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    M. Rangamani, S.F. Ross, D.T. Son and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 01 (2009) 075 [arXiv:0811.2049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Picone and M. Henkel, Local scale-invariance and ageing in noisy systems, Nucl. Phys. B 688 (2004) 217 [cond-mat/0402196] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    D. Bak, M. Gutperle and A. Karch, Time dependent black holes and thermal equilibration, JHEP 12 (2007) 034 [arXiv:0708.3691] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Karch, P. Surowka and E.G. Thompson, A holographic perspective on non-relativistic conformal defects, JHEP 06 (2009) 038 [arXiv:0903.2054] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    C.R. Nappi and E. Witten, A WZW model based on a nonsemisimple group, Phys. Rev. Lett. 71 (1993) 3751 [hep-th/9310112] [SPIRES].zbMATHMathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Schäfer-Nameki, M. Yamazaki and K. Yoshida, Coset Construction for Duals of Non-relativistic CFTs, JHEP 05 (2009) 038 [arXiv:0903.4245] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    Y. Nakayama, Universal time-dependent deformations of Schrödinger geometry, JHEP 04 (2010) 102 [arXiv:1002.0615] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Juan I. Jottar
    • 1
  • Robert G. Leigh
    • 1
  • Djordje Minic
    • 2
  • Leopoldo A. Pando Zayas
    • 3
  1. 1.Department of PhysicsUniversity of IllinoisUrbanaU.S.A.
  2. 2.Institute for Particle, Nuclear and Astronomical Sciences, Department of PhysicsVirginia TechBlacksburgU.S.A.
  3. 3.Michigan Center for Theoretical Physics, Randall Laboratory of PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations