Journal of High Energy Physics

, 2010:23 | Cite as

On inflation with non-minimal coupling

  • Mark P. HertzbergEmail author


A simple realization of inflation consists of adding the following operators to the Einstein-Hilbert action: (∂ϕ)2, λϕ 4, and ξϕ 2 R , with ξ a large non-minimal coupling. Recently there has been much discussion as to whether such theories make sense quantum mechanically and if the inflaton ϕ can also be the Standard Model Higgs. In this work we answer these questions. Firstly, for a single scalar ϕ, we show that the quantum field theory is well behaved in the pure gravity and kinetic sectors, since the quantum generated corrections are small. However, the theory likely breaks down at ~m Pl /ξ due to scattering provided by the self-interacting potential λϕ 4. Secondly, we show that the theory changes for multiple scalars \( \overrightarrow \phi \) with non-minimal coupling \( \xi \overrightarrow \phi \cdot \overrightarrow \phi \mathcal{R} \), since this introduces qualitatively new interactions which manifestly generate large quantum corrections even in the gravity and kinetic sectors, spoiling the theory for energies ≳ m Pl . Since the Higgs doublet of the Standard Model includes the Higgs boson and 3 Goldstone bosons, it falls into the latter category and therefore its validity is manifestly spoiled. We show that these conclusions hold in both the Jordan and Einstein frames and describe an intuitive analogy in the form of the pion Lagrangian. We also examine the recent claim that curvature-squared inflation models fail quantum mechanically. Our work appears to go beyond the recent discussions.


Higgs Physics Cosmology of Theories beyond the SM Renormalization Group 


  1. [1]
    A.H. Guth, The Inflationary Universe: a Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [SPIRES].ADSGoogle Scholar
  2. [2]
    A.D. Linde, A New Inflationary Universe Scenario: a Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    D. Baumann, A. Dymarsky, I.R. Klebanov, L. McAllister and P.J. Steinhardt, A Delicate Universe, Phys. Rev. Lett. 99 (2007) 141601 [arXiv:0705.3837] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D 40 (1989) 1753 [SPIRES].ADSGoogle Scholar
  7. [7]
    R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [SPIRES].ADSGoogle Scholar
  8. [8]
    D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background, Phys. Rev. D 59 (1999) 064029 [astro-ph/9901127] [SPIRES].ADSGoogle Scholar
  10. [10]
    K. Nozari and S.D. Sadatian, Non-Minimal Inflation after WMAP3, Mod. Phys. Lett. A 23 (2008) 2933 [arXiv:0710.0058] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  11. [11]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [SPIRES].ADSGoogle Scholar
  12. [12]
    A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [SPIRES].ADSGoogle Scholar
  13. [13]
    F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [SPIRES].ADSGoogle Scholar
  14. [14]
    J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [SPIRES]. ADSGoogle Scholar
  15. [15]
    A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [SPIRES].ADSGoogle Scholar
  16. [16]
    F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [SPIRES].ADSGoogle Scholar
  17. [17]
    C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [SPIRES].ADSGoogle Scholar
  19. [19]
    F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [SPIRES].ADSGoogle Scholar
  21. [21]
    T.E. Clark, B. Liu, S.T. Love and T. ter Veldhuis, The Standard Model Higgs Boson-Inflaton and Dark Matter, Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [SPIRES].ADSGoogle Scholar
  22. [22]
    R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [SPIRES].ADSGoogle Scholar
  23. [23]
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C.F. Steinwachs, Higgs boson, renormalization group and naturalness in cosmology, arXiv:0910.1041 [SPIRES].
  24. [24]
    D.G. Figueroa, Preheating the Universe from the Standard Model Higgs, AIP Conf. Proc. 1241 (2010) 578 [arXiv:0911.1465] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    N. Okada, M.U. Rehman and Q. Shafi, Running Standard Model Inflation and Type I Seesaw, arXiv:0911.5073 [SPIRES].
  26. [26]
    M.B. Einhorn and D.R.T. Jones, Inflation with Non-Minimal Gravitational Couplings in Supergravity, JHEP 03 (2010) 026 [arXiv:0912.2718] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    R.N. Lerner and J. McDonald, Higgs Inflation and Naturalness, JCAP 04 (2010) 015 [arXiv:0912.5463] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Mazumdar and J. Rocher, Particle physics models of inflation and curvaton scenarios, arXiv:1001.0993 [SPIRES].
  29. [29]
    S.R. Huggins and D.J. Toms, One-graviton exchange interaction of non-minimally coupled scalar fields, Class. Quant. Grav. 4 (1987) 1509 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    S.R. Huggins, Cross sections from tree-level gravitational scattering from a non-minimally coupled scalar field, Class. Quant. Grav. 4 (1987) 1515 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    S. Coleman, Aspects of Symmetry, Selected Erice Lectures, Cambridge University Press, Cambridge U.K. (1985).zbMATHGoogle Scholar
  32. [32]
    M. Atkins and X. Calmet, On the unitarity of linearized General Relativity coupled to matter, arXiv:1002.0003 [SPIRES].
  33. [33]
    S. Weinberg, The Quantum Theory of Fields. Volume 2: Modern Applications, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  34. [34]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [SPIRES].ADSGoogle Scholar
  35. [35]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Center for Theoretical Physics and Department of PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.Kavli Institute for Particle Astrophysics and CosmologyStanford UniversityMenlo ParkU.S.A.
  3. 3.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations