Journal of High Energy Physics

, 2010:17

General analysis of antideuteron searches for dark matter

Article
  • 62 Downloads

Abstract

Lowenergycosmicrayantideuteronsprovideauniquelowbackgroundchannel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

References

  1. [1]
    A. Bottino, F. Donato, N. Fornengo and P. Salati, Which fraction of the measured cosmic ray antiprotons might be due to neutralino annihilation in the galactic halo?, Phys. Rev. D 58 (1998) 123503 [astro-ph/9804137] [SPIRES].ADSGoogle Scholar
  2. [2]
    L. Bergstrom, J. Edsjo and P. Ullio, Cosmic antiprotons as a probe for neutralino dark matter?, astro-ph/9906034 [SPIRES].
  3. [3]
    F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D 69 (2004) 063501 [astro-ph/0306207] [SPIRES].ADSGoogle Scholar
  4. [4]
    A. Barrau et al., Kaluza-Klein Dark Matter and Galactic Antiprotons, Phys. Rev. D 72 (2005) 063507 [astro-ph/0506389] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    P. Grajek, G. Kane, D.J. Phalen, A. Pierce and S. Watson, Neutralino Dark Matter from Indirect Detection Revisited, arXiv:0807.1508 [SPIRES].
  6. [6]
    M. Cirelli, R. Franceschini and A. Strumia, Minimal Dark Matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [SPIRES]. CrossRefADSGoogle Scholar
  7. [7]
    M. Cirelli and A. Strumia, Minimal Dark Matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    E. Nezri, M.H.G. Tytgat and G. Vertongen, Positrons and antiprotons from inert doublet model dark matter, JCAP 04 (2009) 014 [arXiv:0901.2556] [SPIRES].ADSGoogle Scholar
  9. [9]
    BESS collaboration, S. Orito et al., Precision measurement of cosmic-ray antiproton spectrum, Phys. Rev. Lett. 84 (2000) 1078 [astro-ph/9906426] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    BESS collaboration, T. Maeno et al., Successive measurements of cosmic-ray antiproton spectrum in a positive phase of the solar cycle, A stropart. Phys. 16 (2001) 121 [ast ro-ph/0010381] [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Haino et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer, Phys. Lett. B 594 (2004) 35 [astro-ph/0403704] [SPIRES].ADSGoogle Scholar
  12. [12]
    H. Fuke et al., Search for Cosmic-Ray Antideuterons, Phys. Rev. Lett. 95 (2005) 081101 [astro-ph/0504361] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    F. Donato, D. Maurin, P. Brun, T. Delahaye and P. Salati, Constraints on W IMP Dark Matter from the High Energy PAMELA \( {{{\overline p }} \left/ {p} \right.} \) data, Phys. Rev. Lett. 102 (2009) 071301 [arXiv:0810.5292] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    F. Donato, N. Fornengo and P. Salati, Antideuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62 (2000) 043003 [hep-ph/9904481] [SPIRES].ADSGoogle Scholar
  16. [16]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [SPIRES].ADSGoogle Scholar
  17. [17]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    H. Baer, A. Mustafayev, E.-K. Park and S. Profumo, Mixed Wino dark matter: Consequences for direct, indirect and collider detection, JHEP 07 (2005) 046 [hep-ph/0505227] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: From dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    H. Baer and S. P rofumo, Low energy antideuterons: shedding light on dark matter, JCAP 12 (2005) 008 [astro-ph/0510722] [SPIRES].ADSGoogle Scholar
  21. [21]
    F. Donato, N. Fornengo and D. Maurin, Antideuteron fluxes from dark matter annihilation in diffusion models, Phys. Rev. D 78 (2008) 043506 [arXiv:0803.2640] [SPIRES].ADSGoogle Scholar
  22. [22]
    A. Ibarra and D. Tran, Antideuterons from Dark Matter Decay, JCAP 06 (2009) 004 [arXiv:0904.1410] [SPIRES].ADSGoogle Scholar
  23. [23]
    C.B. Braeuninger and M. Cirelli, Anti-deuterons from heavy Dark Matter, Phys. Lett. B 678 (2009) 20 [arXiv:0904.1165] [SPIRES].ADSGoogle Scholar
  24. [24]
    H. Baer, R. Dermisek, S. Rajagopalan and H. Summy, Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB, JCAP 07 (2010) 014 [arXiv:1004.3297] [SPIRES].ADSGoogle Scholar
  25. [25]
    P. Chardonnet, J. Orloff and P. Salati, The production of anti-matter in our galaxy, Phys. Lett. B 409 (1997) 313 [astro-ph/9705110] [SPIRES].ADSGoogle Scholar
  26. [26]
    R. Duperray et al., Flux of light antimatter nuclei near earth, induced by cosmic rays in the galaxy and in the atmosphere, Phys. Rev. D 71 (2005) 083013 [astro-ph/0503544] [SPIRES].ADSGoogle Scholar
  27. [27]
    S.P. Ahlen et al., An Antimatter spectrometer in space, Nucl. Instrum. Meth. A 350 (1994) 351 [SPIRES].ADSGoogle Scholar
  28. [28]
    V. Choutko and F. Giovacchini, Cosmic rays antideuteron Sensitivity for AMS-02 Experiment, in the proceedings of the 30th International Cosmic Ray Conference, Mérida Mexico (2007).Google Scholar
  29. [29]
    K. Mori et al., A novel antimatter detector based on X -ray deexcitation of exotic atoms, Astrophys. J. 566 (2002) 604 [astro-ph/0109463] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    H. Fuke et al., Current status and future plans for the general antiparticle spectrometer (GAPS), Adv. Space Res. 41 (2008) 2056 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: Relic abundance and detection rates, JHEP 11 (2007) 029 [arXiv:0709.4477] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M. Kadastik, M. Raidal and A. Strumia, Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA, Phys. Lett. B 683 (2010) 248 [arXiv:0908.1578] [SPIRES].ADSGoogle Scholar
  33. [33]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    ALEPH collaboration, S. Schael et al., Deuteron and anti-deuteron production in e + e collisions at the Z resonance, Phys. Lett. B 639 (2006) 192 [hep-ex/0604023] [SPIRES].ADSGoogle Scholar
  35. [35]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal Density Profile from Hierarchical Clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    A.W. Graham, D. Merritt, B. Moore, J. Diemand and B. Terzic, Empirical models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models, Astron. J. 132 (2006) 2685 [astro-ph/0509417] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    J.N. Bahcall and R.M. Soneira, The Universe at faint magnetidues. 2. Models for the predicted star counts, Astrophys. J. Suppl. 44 (1980) 73 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    D. Maurin, F. Donato, R. Taillet and P. Salati, Cosmic Rays below Z = 30 in a diffusion model: new constraints on propagation parameters, Astrophys. J. 555 (2001) 585 [ast ro-ph/0101231] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    A. Barrau et al., Antiprotons from primordial black holes, Astron. Astrophys. 388 (2002) 676 [astro-ph/0112486] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    F. Donato et al., Antiprotons from spallation of cosmic rays on interstellar matter, Astrophys. J. 563 (2001) 172 [astro-ph/0103150] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    V.L. Ginzburg and V.S. Ptuskin, On the Origin of Cosmic Rays: Some Problems in High-Energy Astrophysics, Rev. Mod. Phys. 48 (1976) 161 [Erratum ibid. 48 (1976) 675] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    A.W. Strong, I.V. Moskalenko and V.S. Ptuskin, Cosmic-ray propagation and interactions in the Galaxy, Ann. Rev. Nucl. Part. Sci. 57 (2007) 285 [astro-ph/0701517] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    L.J. Gleeson and W.I. Axford, Solar Modulation of Galactic Cosmic Rays, Astrophys. J. 154 (1968) 1011 [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    T. Mitsui, K. Maki and S. Orito, Expected enhancement of the primary anti-proton flux at the solar minimum, Phys. Lett. B 389 (1996) 169 [astro-ph/9608123] [SPIRES].ADSGoogle Scholar
  45. [45]
    J.W. Bieber et al., Antiprotons at solar maximum, Phys. Rev. Lett. 83 (1999) 674 [astro-ph/9903163] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    Y. Asaoka et al., Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of the solar field reversal, Phys. Rev. Lett. 88 (2002) 051101 [astro-ph/0109007] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    Y.M. Antipov et al., Production of low momentum negative particles by 70 GeV protons, Phys. Lett. B 34 (1971) 164 [SPIRES].ADSGoogle Scholar
  48. [48]
    H. Baer, C. Balázs, A. Belyaev and J . O’Farrill, Direct detection of dark matter in supersymmetric models, JCAP 09 (2003) 007 [hep-ph/0305191] [SPIRES].ADSGoogle Scholar
  49. [49]
    A. Kurylov and M. Kamionkowski, Generalized analysis of weakly-interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [SPIRES].ADSGoogle Scholar
  51. [51]
    Q.-H. Cao, I. Low and G. Shaughnessy, From Pamela to CDMS and Back, Phys. Lett. B 691 (2010) 73 [arXiv:0912.4510] [SPIRES].ADSGoogle Scholar
  52. [52]
    The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    F. Halzen and D. Hooper, The indirect Search for dark matter with IceCube, New J. Phys. 11 (2009) 105019 [arXiv:0910.4513] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].ADSGoogle Scholar
  56. [56]
    D.P. Finkbeiner, T.R. Slatyer and N. Weiner, Nuclear scattering of dark matter coupled to a new light scalar, Phys. Rev. D 78 (2008) 116006 [arXiv:0810.0722] [SPIRES].ADSGoogle Scholar
  57. [57]
    T. Cohen, D.J. Phalen and A. Pierce, On the Correlation Between the Spin-Independent and Spin-Dependent Direct Detection of Dark Matter, Phys. Rev. D 81 (2010) 116001 [arXiv:1001.3408] [SPIRES].ADSGoogle Scholar
  58. [58]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    G. Servant and T.M.P. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    H.C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  62. [62]
    J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T -parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [SPIRES].ADSGoogle Scholar
  63. [63]
    A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002 [hep-ph/0603077] [SPIRES].ADSGoogle Scholar
  64. [64]
    K. Agashe and G. Servant, Warped unification, proton stability and dark matter, Phys. Rev. Lett. 93 (2004) 231805 [hep-ph/0403143] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    K. Agashe and G. Servant, Baryon number in warped GUTs: Model building and (dark matter related) phenomenology, JCAP 02 (2005) 002 [hep-ph/0411254] [SPIRES].ADSGoogle Scholar
  66. [66]
    C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Higgs in Space!, JCAP 04 (2010) 004 [arXiv:0912.0004] [SPIRES].ADSGoogle Scholar
  67. [67]
    J. McDonald, Gauge Singlet Scalars as Cold Dark Matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].ADSGoogle Scholar
  68. [68]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: A singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    E. Ponton and L. Randall, TeV Scale Singlet dark matter, JHEP 04 (2009) 080 [arXiv:0811.1029] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for Inelastic Dark Matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].ADSGoogle Scholar
  72. [72]
    A. Menon, R. Morris, A. P ierce and N. Weiner, Capture and Indirect Detection of Inelastic Dark Matter, Phys. Rev. D 82 (2010) 015011 [arXiv:0905.1847] [SPIRES].ADSGoogle Scholar
  73. [73]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    M. Nagai and K. Nakayama, Direct/indirect detection signatures of non-thermally produced dark matter, Phys. Rev. D 78 (2008) 063540 [arXiv:0807.1634] [SPIRES].ADSGoogle Scholar
  75. [75]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [SPIRES].ADSGoogle Scholar
  76. [76]
    P. Grajek, G. Kane, D. Phalen, A. Pierce and S. Watson, Is the PAMELA Positron Excess Winos?, Phys. Rev. D 79 (2009) 043506 [arXiv:0812.4555] [SPIRES].ADSGoogle Scholar
  77. [77]
    G. Kane, R. Lu and S. Watson, PAMELA Satellite Data as a Signal of Non-Thermal Wino LSP Dark Matter, Phys. Lett. B 681 (2009) 151 [arXiv:0906.4765] [SPIRES].ADSGoogle Scholar
  78. [78]
    P. Gondolo et al., DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [SPIRES].ADSGoogle Scholar
  79. [79]
    P. Gondolo, J. Edsjö, P. Ullio, L. Bergström, M. Schelke, E.A. Baltz, T. Bringmann and G. Duda, DarkSUSY Home Page, http://www.physto.se/∼edsjo/darksusy.
  80. [80]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [SPIRES].ADSGoogle Scholar
  82. [82]
    S. Weinberg, T he Quantum theory of fields. Vol. 1: Foundations, Cambridge Univ. Press, Cambridge U.K. (1995).Google Scholar
  83. [83]
    M.E. Peskin and D.V. Schroeder, An Introduction To Quantum Field Theory, Addison-Wesley, New York U.S.A. (1995).Google Scholar
  84. [84]
    M. Srednicki, Quantum field theory, Cambridge Univ. Press, Cambridge U.K. (2007).MATHGoogle Scholar
  85. [85]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [SPIRES].
  86. [86]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations