Extracting the dark matter mass from single stage cascade decays at the LHC

  • Timothy Cohen
  • Eric Kuflik
  • Kathryn M. Zurek


We explore a variant on the M T2 kinematic variable which enables dark matter mass measurements for simple, one stage, cascade decays. This will prove useful for constraining a subset of supersymmetric processes, or a class of leptophilic dark matter models at the LHC. We investigate the statistical reach of these measurements and discuss which sources of error have the largest effects. For example, we find that using only single stage cascade decays with initial state radiation, a measurement of a 150 GeV dark matter candidate can be made to \( \mathcal{O}\left( {10\% } \right) \) for a parent mass of 300 GeV with a production cross section of 100 fb and 100 fb−1 of integrated luminosity provided that backgrounds can be tightly controlled.


Supersymmetry Phenomenology 


  1. [1]
    M. Burns, K. Kong, K.T. Matchev and M. Park, Using Subsystem MT2 for Complete Mass Determinations in Decay Chains with Missing Energy at Hadron Colliders, JHEP 03 (2009) 143 [arXiv:0810.5576] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    B. Gripaios, Transverse Observables and Mass Determination at Hadron Colliders, JHEP 02 (2008) 053 [arXiv:0709.2740] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    A.J. Barr, B. Gripaios and C.G. Lester, Weighing Wimps with Kinks at Colliders: Invisible Particle Mass Measurements from Endpoints, JHEP 02 (2008) 014 [arXiv:0711.4008] [SPIRES]. CrossRefADSGoogle Scholar
  4. [4]
    K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precision sparticle spectroscopy in the inclusive same-sign dilepton channel at LHC, Phys. Rev. D 82 (2010) 077701 [arXiv:0909.4300] [SPIRES].ADSGoogle Scholar
  5. [5]
    G. Polesello and D.R. Tovey, Supersymmetric particle mass measurement with the boost-corrected contransverse mass, JHEP 03 (2010) 030 [arXiv:0910.0174] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    K.T. Matchev and M. Park, A general method for determining the masses of semi-invisibly decaying particles at hadron colliders, arXiv:0910.1584 [SPIRES].
  7. [7]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    The Fermi LAT collaboration, A.A. Abdo et al., Measurement of the Cosmic Ray e+ plus e-spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    T. Cohen and K.M. Zurek, Leptophilic Dark Matter from the Lepton Asymmetry, Phys. Rev. Lett. 104 (2010) 101301 [arXiv:0909.2035] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    K.M. Zurek, Multi-Component Dark Matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [SPIRES].ADSGoogle Scholar
  11. [11]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [SPIRES].ADSGoogle Scholar
  12. [12]
    L.J. Hall, T. Moroi and H. Murayama, Sneutrino cold dark matter with lepton-number violation, Phys. Lett. B 424 (1998) 305 [hep-ph/9712515] [SPIRES].ADSGoogle Scholar
  13. [13]
    Z. Thomas, D. Tucker-Smith and N. Weiner, Mixed Sneutrinos, Dark Matter and the LHC, Phys. Rev. D 77 (2008) 115015 [arXiv:0712.4146] [SPIRES].ADSGoogle Scholar
  14. [14]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner Mass Measurement Technique using 1D Orthogonal Decompositions of the Cambridge Transverse Mass Variable M T2, Phys. Rev. Lett. 105 (2010) 051802 [arXiv:0910.3679] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].ADSGoogle Scholar
  16. [16]
    A. Barr, C. Lester and P. Stephens, m(T2): The Truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [SPIRES].ADSGoogle Scholar
  17. [17]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring superparticle masses at hadron collider using the transverse mass kink, JHEP 02 (2008) 035 [arXiv:0711.4526] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and MT2, JHEP 12 (2008) 063 [arXiv:0810.5178] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    A.J. Barr, B. Gripaios and C.G. Lester, Transverse masses and kinematic constraints: from the boundary to the crease, JHEP 11 (2009) 096 [arXiv:0908.3779] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    I.-W. Kim, Algebraic Singularity Method for Mass Measurement with Missing Energy, Phys. Rev. Lett. 104 (2010) 081601 [arXiv:0910.1149] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino Stransverse Mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    PGS: Pretty Good Simulation software, available from John Conway’s website at:
  25. [25]
    A.J. Barr, Measuring slepton spin at the LHC, JHEP 02 (2006) 042 [hep-ph/0511115] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    J. Alwall, A. Freitas and O. Mattelaer, Measuring Sparticles with the Matrix Element, AIP Conf. Proc. 1200 (2010) 442 [arXiv:0910.2522] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [SPIRES].ADSGoogle Scholar
  28. [28]
    G. Servant and T.M.P. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Michigan Center for Theoretical Physics (MCTP), Department of PhysicsUniversity of Michigan Ann ArborMichiganU.S.A.

Personalised recommendations