Advertisement

Generations: three prints, in colour

  • Cohl Furey
Open Access
Article

Abstract

We point out a somewhat mysterious appearance of SUc(3) representations, which exhibit the behaviour of three full generations of standard model particles. These representations are found in the Clifford algebra ℂl(6), arising from the complex octonions. In this paper, we explain how this 64-complex-dimensional space comes about. With the algebra in place, we then identify generators of SU(3) within it. These SU(3) generators then act to partition the remaining part of the 64-dimensional Clifford algebra into six triplets, six singlets, and their antiparticles. That is, the algebra mirrors the chromodynamic structure of exactly three generations of the standard model’s fermions. Passing from particle to antiparticle, or vice versa, requires nothing more than effecting the complex conjugate, ∗: i ↦ − i. The entire result is achieved using only the eight-dimensional complex octonions as a single ingredient.

Keywords

Beyond Standard Model QCD Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Günaydin and F. Gürsey, Quark Structure and the Octonions, J. Math. Phys. 14 (1973) 1651.MathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Günaydin and F. Gürsey, Quark Statistics and Octonions, Phys. Rev. D 9 (1974) 3387.ADSGoogle Scholar
  3. [3]
    G. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics, Kluwer Academic Publishers (1994).Google Scholar
  4. [4]
    G. Dixon, Division Algebras: Spinors: Idempotents: The Algebraic Structure of Reality, arXiv:1012.1304 [INSPIRE].
  5. [5]
    G.M. Dixon, Division Algebras: Family Replication, J. Math. Phys. 45 (2004) 3878.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Connes and J. Lott, Particle Models and Noncommutative Geometry, Nuc. Phys. B Proc. Suppl. 18B (1990) 29.ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    L. Boyle and S. Farnsworth, Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics, arXiv:1401.5083 [INSPIRE].
  8. [8]
    A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, An octonionic formulation of the M-theory algebra, arXiv:1402.4649 [INSPIRE].
  9. [9]
    C.A. Manogue and T. Dray, Octonions, E 6 and Particle Physics, J. Phys. Conf. Ser. 254 (2010) 012005 [arXiv:0911.2253] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    C.D. Carone and A. Rastogi, An Exceptional electroweak model, Phys. Rev. D 77 (2008) 035011 [arXiv:0712.1011] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Cossu, M. D’Elia, A. Di Giacomo, B. Lucini and C. Pica, G 2 gauge theory at finite temperature, JHEP 10 (2007) 100 [arXiv:0709.0669] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Danzer, C. Gattringer and A. Maas, Chiral symmetry and spectral properties of the Dirac operator in G2 Yang-Mills Theory, JHEP 01 (2009) 024 [arXiv:0810.3973] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Greensite, K. Langfeld, Š. Olejník, H. Reinhardt and T. Tok, Color Screening, Casimir Scaling and Domain Structure in G 2 and SU(N) Gauge Theories, Phys. Rev. D 75 (2007) 034501 [hep-lat/0609050] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Holland, P. Minkowski, M. Pepe and U.J. Wiese, Exceptional confinement in G 2 gauge theory, Nucl. Phys. B 668 (2003) 207 [hep-lat/0302023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Liptak and Š. Olejník, Casimir scaling in G2 lattice gauge theory, Phys. Rev. D 78 (2008) 074501 [arXiv:0807.1390] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Furey, Unified Theory of Ideals, Phys. Rev. D 86 (2012) 025024 [arXiv:1002.1497] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.C. Baez, The Octonions, Bull. Am. Math. Soc. 39 (2002) 145 [math/0105155] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.H. Conway and D.A. Smith, On Quaternions and Octonions, Their Geometry, Arithmetic, and Symmetry, Peters (2003).Google Scholar
  19. [19]
    S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics, CUP (1995).Google Scholar
  20. [20]
    S. De Leo and K. Abdel-Khalek, Octonionic representations of GL(8,R) and GL(4,C), J. Math. Phys. 38 (1997) 582 [hep-th/9607140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Sudbery, Division Algebras, (Pseudo)orthogonal Groups and Spinors, J. Phys. A 17 (1984) 939.ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.University of WaterlooOntarioCanada

Personalised recommendations