Journal of High Energy Physics

, 2013:147

Hybrid Monte Carlo on Lefschetz thimbles — A study of the residual sign problem

  • H. Fujii
  • D. Honda
  • M. Kato
  • Y. Kikukawa
  • S. Komatsu
  • T. Sano
Article

Abstract

We consider a hybrid Monte Carlo algorithm which is applicable to lattice theories defined on Lefschetz thimbles. In the algorithm, any point (field configuration) on a thimble is parametrized uniquely by the flow-direction and the flow-time defined at a certain asymptotic region close to the critical point, and it is generated by solving the gradient flow equation downward. The associated complete set of tangent vectors is also generated in the same manner. Molecular dynamics is then formulated as a constrained dynamical system, where the equations of motion with Lagrange multipliers are solved by the second-order constraint-preserving symmetric integrator. The algorithm is tested in the λϕ4 model at finite density, by choosing the thimbles associated with the classical vacua for subcritical and supercritical values of chemical potential. For the lattice size L = 4, we find that the residual sign factors average to not less than 0.99 and are safely included by reweighting and that the results of the number density are consistent with those obtained by the complex Langevin simulations.

Keywords

Stochastic Processes Lattice Quantum Field Theory Lattice Gauge Field Theories Differential and Algebraic Geometry 

References

  1. [1]
    P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 [arXiv:1005.0539] [INSPIRE].
  2. [2]
    S. Gupta, QCD at finite density, PoS(LATTICE 2010)007 [arXiv:1101.0109] [INSPIRE].
  3. [3]
    L. Levkova, QCD at nonzero temperature and density, PoS(LATTICE 2011)011 [arXiv:1201.1516] [INSPIRE].
  4. [4]
    S. Ejiri, Phase structure of hot dense QCD by a histogram method, Eur. Phys. J. A 49 (2013) 86 [arXiv:1306.0295] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Aarts, Complex Langevin dynamics and other approaches at finite chemical potential, PoS(LATTICE 2012)017 [arXiv:1302.3028] [INSPIRE].
  6. [6]
    C. Gattringer, New developments for lattice field theory at non-zero density, plenary talk at Lattice 2013, July 29-August 3, Mainz, Germany (2013).Google Scholar
  7. [7]
    G. Parisi, On complex probabilities, Phys. Lett. B 131 (1983) 393 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J.R. Klauder, A Langevin approach to fermion and quantum spin correlation functions, J. Phys. A 16 (1983) L317.MathSciNetADSGoogle Scholar
  9. [9]
    J.R. Klauder, Coherent state Langevin equations for canonical quantum systems with applications to the quantized Hall effect, Phys. Rev. A 29 (1984) 2036 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Witten, Analytic continuation of Chern-Simons theory, arXiv:1001.2933 [INSPIRE].
  11. [11]
    AuroraScience collaboration, M. Cristoforetti, F. Di Renzo and L. Scorzato, New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506 [arXiv:1205.3996] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Ambjørn and S.K. Yang, Numerical problems in applying the Langevin equation to complex effective actions, Phys. Lett. B 165 (1985) 140 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Ambjørn, M. Flensburg and C. Peterson, The complex Langevin equation and Monte Carlo simulations of actions with static charges, Nucl. Phys. B 275 (1986) 375 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Berges, S. Borsányi, D. Sexty and I.-O. Stamatescu, Lattice simulations of real-time quantum fields, Phys. Rev. D 75 (2007) 045007 [hep-lat/0609058] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Berges and D. Sexty, Real-time gauge theory simulations from stochastic quantization with optimized updating, Nucl. Phys. B 799 (2008) 306 [arXiv:0708.0779] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Aarts and I.-O. Stamatescu, Stochastic quantization at finite chemical potential, JHEP 09 (2008) 018 [arXiv:0807.1597] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Aarts, Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601 [arXiv:0810.2089] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Aarts, Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas, JHEP 05 (2009) 052 [arXiv:0902.4686] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Adaptive stepsize and instabilities in complex Langevin dynamics, Phys. Lett. B 687 (2010) 154 [arXiv:0912.0617] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Aarts, E. Seiler and I.-O. Stamatescu, The complex Langevin method: when can it be trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Aarts and F.A. James, On the convergence of complex Langevin dynamics: The Three-dimensional XY model at finite chemical potential, JHEP 08 (2010) 020 [arXiv:1005.3468] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Complex Langevin: etiology and diagnostics of its main problem, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270][INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Aarts and F.A. James, Complex Langevin dynamics in the SU(3) spin model at nonzero chemical potential revisited, JHEP 01 (2012) 118 [arXiv:1112.4655] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Seiler, D. Sexty and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723 (2013) 213 [arXiv:1211.3709] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Pawlowski and C. Zielinski, Thirring model at finite density in 0 + 1 dimensions with stochastic quantization: crosscheck with an exact solution, Phys. Rev. D 87 (2013) 094503 [arXiv:1302.1622] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.M. Pawlowski and C. Zielinski, Thirring model at finite density in 2 + 1 dimensions with stochastic quantization, Phys. Rev. D 87 (2013) 094509 [arXiv:1302.2249] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty and I.-O. Stamatescu, Controlling complex Langevin dynamics at finite density, Eur. Phys. J. A 49 (2013) 89 [arXiv:1303.6425] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Aarts, P. Giudice, E. Seiler and E. Seiler, Localised distributions and criteria for correctness in complex Langevin dynamics, Annals Phys. 337 (2013) 238 [arXiv:1306.3075] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, arXiv:1307.7748 [INSPIRE].
  30. [30]
    G. Aarts, Lefschetz thimbles and stochastic quantisation: Complex actions in the complex plane, arXiv:1308.4811 [INSPIRE].
  31. [31]
    P. Giudice, G. Aarts and E. Seiler, Localised distributions in complex Langevin dynamics, arXiv:1309.3191 [INSPIRE].
  32. [32]
    C. Gattringer and T. Kloiber, Lattice study of the Silver Blaze phenomenon for a charged scalar ϕ 4 field, Nucl. Phys. B 869 (2013) 56 [arXiv:1206.2954] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y.D. Mercado and C. Gattringer, Monte Carlo simulation of the SU(3) spin model with chemical potential in a flux representation, Nucl. Phys. B 862 (2012) 737 [arXiv:1204.6074] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Gattringer and A. Schmidt, Gauge and matter fields as surfaces and loopsAn exploratory lattice study of the Z(3) Gauge-Higgs model, Phys. Rev. D 86 (2012) 094506 [arXiv:1208.6472] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Cristoforetti, L. Scorzato and F. Di Renzo, The sign problem and the Lefschetz thimble, J. Phys. Conf. Ser. 432 (2013) 012025 [arXiv:1210.8026] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, Monte Carlo simulations on the Lefschetz thimble: taming the sign problem, Phys. Rev. D 88 (2013) 051501 [arXiv:1303.7204] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Mukherjee, M. Cristoforetti and L. Scorzato, Metropolis Monte Carlo on the Lefschetz thimble: application to a one-plaquette model, Phys. Rev. D 88 (2013) 051502 [arXiv:1308.0233] [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Leimkuhler and S. Reich, Simulating hamiltonian dynamics, Cambridge University Press, Cambridge U.K. (2004).MATHGoogle Scholar
  39. [39]
    R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge U.K. (1985).CrossRefMATHGoogle Scholar
  40. [40]
    M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Statist. Soc. B 73 (2011) 1.MathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • H. Fujii
    • 1
  • D. Honda
    • 1
  • M. Kato
    • 1
  • Y. Kikukawa
    • 1
  • S. Komatsu
    • 1
  • T. Sano
    • 2
  1. 1.Institute of Physicsthe University of TokyoTokyoJapan
  2. 2.Theoretical Research DivisionRIKEN Nishina CenterSaitamaJapan

Personalised recommendations