4D, \( \mathcal{N} \) = 1 supergravity genomics

  • Isaac Chappell
  • S. James GatesJr.
  • William D. LinchIII
  • James Parker
  • Stephen Randall
  • Alexander Ridgway
  • Kory Stiffler
Article

Abstract

The off-shell representation theory of 4D, \( \mathcal{N} \) = 1 supermultiplets can be categorized in terms of distinct irreducible graphical representations called adinkras as part of a larger effort we call supersymmetry ‘genomics.’ Recent evidence has emerged pointing to the existence of three such fundamental adinkras associated with distinct equivalence classes of a Coxeter group. A partial description of these adinkras is given in terms of two types, termed cis-and trans-adinkras (the latter being a degenerate doublet) in analogy to cis/trans isomers in chemistry. Through a new and simple procedure that uses adinkras, we find the irreducible off-shell adinkra representations of 4D, \( \mathcal{N} \) = 1 supergravity, in the old-minimal, non-minimal, and conformal formulations. This procedure uncovers what appears to be a selection rule useful to reverse engineer adinkras to higher dimensions. We categorize the supergravity representations in terms of the number of cis-(nc) and trans-(nt) adinkras in the representation and synthesize our new results with our previous supersymmetry genomics results into a group theoretic framework.

Keywords

Supergravity Models Extended Supersymmetry Superspaces 

References

  1. [1]
    S.J. Gates Jr., J. Gonzales, B. MacGregor, J. Parker, R. Polo-Sherk, V.G.J. Rodgers and L. Wassink, 4D, N = 1 Supersymmetry Genomics (I), JHEP 12 (2009) 008 [arXiv:0902.3830] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S.J. Gates Jr., J. Hallett, J. Parker, V.G. Rodgers and K. Stiffler, 4D, N = 1 Supersymmetry Genomics (II), JHEP 06 (2012) 071 [arXiv:1112.2147] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. Faux, K. Iga and G. Landweber, Dimensional Enhancement via Supersymmetry, Adv. Math. Phys. 2011 (2011) 259089 [arXiv:0907.3605] [INSPIRE].MathSciNetGoogle Scholar
  4. [4]
    M.G. Faux and G.D. Landweber, Spin Holography via Dimensional Enhancement, Phys. Lett. B 681 (2009) 161 [arXiv:0907.4543] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    W. Siegel and M. Roček, On off-shell supermultiplets, Phys. Lett. B 105 (1981) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.J. Gates Jr., W.D. Linch III and J. Phillips, When superspace is not enough, hep-th/0211034 [INSPIRE].
  7. [7]
    C.F. Doran, M.G. Faux, S.J. Gates Jr., T. Hubsch, K.M. Iga et al., On the matter of N = 2 matter, Phys. Lett. B 659 (2008) 441 [arXiv:0710.5245] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S.J. Gates Jr. and T. Hubsch, On Dimensional Extension of Supersymmetry: From Worldlines to Worldsheets, Adv. in Th. Math. Phys. 16 (2012) 1619 [arXiv:1104.0722] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    T. Hubsch, Weaving Worldsheet Supermultiplets from the Worldlines Within, arXiv:1104.3135 [INSPIRE].
  10. [10]
    S.J. Gates Jr. and K. Stiffler, A View from the Phylum of the 4D, N=2 Supersymmetry Genome, manuscript in progress.Google Scholar
  11. [11]
    Isomer, 14 July 2013, in https://en.wikipedia.org/wiki/Isomer (retrieved 16 July 2013).
  12. [12]
    I. Chappell, Isaac, S.J. Gates Jr. and T. Hubsch, Adinkra (In)Equivalence From Coxeter Group Representations: A Case Study, arXiv:1210.0478 [INSPIRE].
  13. [13]
    S.J. Gates Jr., T. Hubsch and K. Stiffler, Adinkras and SUSY Holography, arXiv:1208.5999 [INSPIRE].
  14. [14]
    S.J. Gates Jr., J. Hallett, T. Hubsch and K. Stiffler, The Real Anatomy of Complex Linear Superfields, Int. J. Mod. Phys. A 27 (2012) 1250143 [arXiv:1202.4418] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    V. Ogievetsky and E. Sokatchev, On Vector Superfield Generated by Supercurrent, Nucl. Phys. B 124 (1977) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V. Ogievetsky and E. Sokatchev, Equations of Motion for Superfields, in proceedings of Nonlocal, Nonlinear and Nonrenormalizable Field Theories, Alushta, Ukraine (1976), pg. 183–203 [INSPIRE].
  17. [17]
    V. Ogievetsky and E. Sokatchev, The Axial Superfield and the Supergravity Group, Yad. Fiz. 28 (1978)1631 [INSPIRE].Google Scholar
  18. [18]
    V. Ogievetsky and E. Sokatchev, Equation of Motion for the Axial Gravitational Superfield, Sov. J. Nucl. Phys. 32 (1980) 589 [INSPIRE].Google Scholar
  19. [19]
    P. Breitenlohner, A Geometric Interpretation of Local Supersymmetry, Phys. Lett. B 67 (1977) 49 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Breitenlohner, Local Supersymmetry and the Chiral Multiplet, submitted to Phys. Lett. B (1976) [INSPIRE].
  21. [21]
    P. Breitenlohner, Some Invariant Lagrangians for Local Supersymmetry, Nucl. Phys. B 124 (1977) 500 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Stelle and P.C. West, Minimal Auxiliary Fields for Supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Ferrara and P. van Nieuwenhuizen, The Auxiliary Fields of Supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    K.R. Dienes and B. Thomas, On the Inconsistency of Fayet-Iliopoulos Terms in Supergravity Theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality, Phys. Rev. D 81 (2010) 085036 [arXiv:0911.5190] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S.M. Kuzenko and S.J. Tyler, Complex linear superfield as a model for Goldstino, JHEP 04 (2011) 057 [arXiv:1102.3042] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S.M. Kuzenko, Variant supercurrent multiplets, JHEP 04 (2010) 022 [arXiv:1002.4932] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S.M. Kuzenko, Variant supercurrents and Noether procedure, Eur. Phys. J. C 71 (2011) 1513 [arXiv:1008.1877] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T.T. Dumitrescu and N. Seiberg, Supercurrents and Brane Currents in Diverse Dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    W. Siegel and S.J. Gates Jr., Superfield Supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    I. Buchbinder, S.J. Gates Jr., W.D. Linch III and J. Phillips, New 4-D, N = 1 superfield theory: Model of free massive superspin 3/2 multiplet, Phys. Lett. B 535 (2002) 280 [hep-th/0201096] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S.J. Gates Jr., S.M. Kuzenko and J. Phillips, The Off-shell (3/2, 2) supermultiplets revisited, Phys. Lett. B 576 (2003) 97 [hep-th/0306288] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S.J. Gates Jr., S.M. Kuzenko and A.G. Sibiryakov, Towards a unified theory of massless superfields of all superspins, Phys. Lett. B 394 (1997) 343 [hep-th/9611193] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Isaac Chappell
    • 1
  • S. James GatesJr.
    • 1
  • William D. LinchIII
    • 1
  • James Parker
    • 1
  • Stephen Randall
    • 1
  • Alexander Ridgway
    • 1
  • Kory Stiffler
    • 1
    • 2
  1. 1.Center for String and Particle Theory, Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  2. 2.Department of Chemistry, Physics, and AstronomyIndiana University NorthwestGaryU.S.A.

Personalised recommendations