Journal of High Energy Physics

, 2019:278 | Cite as

Light mediators in anomaly free U (1)X models. Part I. Theoretical framework

  • F.C. CorreiaEmail author
  • Svjetlana Fajfer
Open Access
Regular Article - Theoretical Physics


We examine theoretical features of U (1) X extensions of the Standard Model whose quantum anomalies are canceled per generation. Similarly to other versions, the theory consists of a Two-Higgs-Doublet Model plus a scalar singlet embedded into the SM ⊗ U (1)X gauge group, and introduces small modifications to the Z -boson interactions. These changes can be minimized by exclusively charging right-handed fermions under the new Abelian symmetry, and are compensated by the neutral X -boson exchange. Non- universality of fermion couplings can also be achieved by requiring one single X -charged family. In general, X gauge bosons can be separated into A′ and Z′ subsets, distinguished by the presence of axial-vector components in the Z′ exchange. A′ physics, in particular the dark photons case, is commonly simpler to constrain and therefore favored by experimental tests. Finally, the model can be UV completed both by stable χ fermions or by right-handed neutrinos. The prior case may provide cold WIMPs in the theory.


Beyond Standard Model Higgs Physics Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A.H.G. Peter, Dark matter: a brief review, arXiv:1201.3942 [INSPIRE].
  2. [2]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys.B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
  3. [3]
    T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev.D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].
  4. [4]
    P. Batra, B.A. Dobrescu and D. Spivak, Anomaly-free sets of fermions, J. Math. Phys.47 (2006) 082301 [hep-ph/0510181] [INSPIRE].
  5. [5]
    F.C. Correia and S. Fajfer, Restrained dark U (1)dat low energies, Phys. Rev.D 94 (2016) 115023 [arXiv:1609.00860] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Bauer et al., Dark matter in anomaly-free gauge extensions, Sci Post Phys.5 (2018) 036 [arXiv:1805.01904] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    BaBar collaboration, Search for a muonic dark force at BABAR, Phys. Rev.D 94 (2016) 011102 [arXiv:1606.03501] [INSPIRE].
  8. [8]
    J.L. Feng et al., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev.D 95 (2017) 035017 [arXiv:1608.03591] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Tucker-Smith and I. Yavin, Muonic hydrogen and MeV forces, Phys. Rev.D 83 (2011) 101702 [arXiv:1011.4922] [INSPIRE].ADSGoogle Scholar
  10. [10]
    N. Bezginov et al., A measurement of the atomic hydrogen Lamb shift and the proton charge radius, Science365 (2019) 1007 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Batell, D. McKeen and M. Pospelov, New parity-violating muonic forces and the proton charge radius, Phys. Rev. Lett.107 (2011) 011803 [arXiv:1103.0721] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Hiller and F. Krüger, More model-independent analysis of b → s processes, Phys. Rev.D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].
  13. [13]
    G. Hiller and I. Nisandzic, R Kand R K∗ beyond the standard model, Phys. Rev.D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar
  14. [14]
    Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  15. [15]
    Muon g-2 collaboration, Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett.92 (2004) 161802 [hep-ex/0401008] [INSPIRE].
  16. [16]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept.477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Hagiwara et al., (g − 2)μand α(\( {M}_Z^2 \)) re-evaluated using new precise data, J. Phys.G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
  18. [18]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M Z), Eur. Phys. J.C 71 (2011) 1515 [Erratum ibid.C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  19. [19]
    P. Ilten, Y. Soreq, M. Williams and W. Xue, Serendipity in dark photon searches, JHEP06 (2018) 004 [arXiv:1801.04847] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Baum and N.R. Shah, Two Higgs doublets and a complex singlet: disentangling the decay topologies and associated phenomenology, arXiv:1808.02667 [INSPIRE].
  21. [21]
    D.A. Camargo et al., Neutrino masses in a two Higgs doublet model with a U(1) gauge symmetry, JHEP04 (2019) 129 [arXiv:1811.05488] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D.A. Camargo, M.D. Campos, T.B. de Melo and F.S. Queiroz, A two Higgs doublet model for dark matter and neutrino masses, Phys. Lett.B 795 (2019) 319 [arXiv:1901.05476] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K.S. Babu, A. Friedland, P.A.N. Machado and I. Mocioiu, Flavor gauge models below the fermi scale, JHEP12 (2017) 096 [arXiv:1705.01822] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys.B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Kahn, G. Krnjaic, S. Mishra-Sharma and T.M.P. Tait, Light weakly coupled axial forces: models, constraints and projections, JHEP05 (2017) 002 [arXiv:1609.09072] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.Y. Pang, R.H. Hildebrand, G.D. Cable and R. Stiening, Search for rare k +decays. I. k +→ μ +ν \( \overline{v} \)ν, Phys. Rev.D 8 (1973) 1989 [INSPIRE].
  27. [27]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free models for flavour anomalies, Eur. Phys. J.C 78 (2018) 238 [arXiv:1705.03447] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Cui and F. D’Eramo, Surprises from complete vector portal theories: New insights into the dark sector and its interplay with Higgs physics, Phys. Rev.D 96 (2017) 095006 [arXiv:1705.03897] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev.D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  30. [30]
    V. Barger, C.-W. Chiang, W.-Y. Keung and D. Marfatia, Proton size anomaly, Phys. Rev. Lett.106 (2011) 153001 [arXiv:1011.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Bhatia, S. Chakraborty and A. Dighe, Neutrino mixing and RK anomaly in U(1)Xmodels: a bottom-up approach, JHEP03 (2017) 117 [arXiv:1701.05825] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett.113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev.D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  34. [34]
    B. Echenard, R. Essig and Y.-M. Zhong, Projections for dark photon searches at Mu3e, JHEP01 (2015) 113 [arXiv:1411.1770] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    KLOE-2 collaboration, Search for a vector gauge boson in 𝜙 meson decays with the KLOE detector, Phys. Lett.B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].
  36. [36]
    NA48/2 collaboration, Search for the dark photon in π 0decays, Phys. Lett.B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
  37. [37]
    P. Ilten, J. Thaler, M. Williams and W. Xue, Dark photons from charm mesons at LHCb, Phys. Rev.D 92 (2015) 115017 [arXiv:1509.06765] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Balewski et al., The DarkLight experiment: a precision search for new physics at low energies, arXiv:1412.4717 [INSPIRE].
  39. [39]
    O. Moreno, The heavy photon search experiment at Jefferson lab, in the proceedings of the Meeting of the APS Division of Particles and Fields (DPF 2013), August 13–17, Santa Cruz, California, U.S.A. (2013), arXiv:1310.2060 [INSPIRE].
  40. [40]
    NA62 collaboration, Searches for very weakly-coupled particles beyond the Standard Model with NA62, in the proceedings of the 13thPatras Workshop on Axions, WIMPs and WISPs (PATRAS 2017), May 15–19, Thessaloniki, Greece (2018), arXiv:1711.08967.
  41. [41]
    A. Freitas, J. Lykken, S. Kell and S. Westhoff, Testing the muon g − 2 anomaly at the LHC, JHEP05 (2014) 145 [Erratum ibid.09 (2014) 155] [arXiv:1402.7065] [INSPIRE].
  42. [42]
    F.S. Queiroz and W. Shepherd, New physics contributions to the muon anomalous magnetic moment: a numerical code, Phys. Rev.D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Biggio and M. Bordone, Minimal muon anomalous magnetic moment, JHEP02 (2015) 099 [arXiv:1411.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Biggio, M. Bordone, L. Di Luzio and G. Ridolfi, Massive vectors and loop observables: the g − 2 case, JHEP10 (2016) 002 [arXiv:1607.07621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M. Williams, C.P. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for abelian gauge bosons in the MeV-TeV mass range, JHEP08 (2011) 106 [arXiv:1103.4556] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G.C. Branco, L. Lavoura and J.P. Silva, CP violation, Int. Ser. Monogr. Phys.103 (1999) 1 [INSPIRE].Google Scholar
  47. [47]
    K. Blum, Y. Grossman, Y. Nir and G. Perez, Combining K 0- \( {\overline{K}}^0 \)mixing and D 0- \( {\overline{D}}^0 \)mixing to constrain the flavor structure of new physics, Phys. Rev. Lett.102 (2009) 211802 [arXiv:0903.2118] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für PhysikTechnische Universität DortmundDortmundGermany
  2. 2.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.J. Stefan InstituteLjubljanaSlovenia

Personalised recommendations