Advertisement

Journal of High Energy Physics

, 2019:270 | Cite as

Analytic Euclidean bootstrap

  • Baur MukhametzhanovEmail author
  • Alexander Zhiboedov
Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

We solve crossing equations analytically in the deep Euclidean regime. Large scaling dimension ∆ tails of the weighted spectral density of primary operators of given spin in one channel are matched to the Euclidean OPE data in the other channel. Subleading \( \frac{1}{\varDelta } \) tails are systematically captured by including more operators in the Euclidean OPE in the dual channel. We use dispersion relations for conformal partial waves in the complex ∆ plane, the Lorentzian inversion formula and complex tauberian theorems to derive this result. We check our formulas in a few examples (for CFTs and scattering amplitudes) and find perfect agreement. Moreover, in these examples we observe that the large ∆ expansion works very well already for small ∆ 1. We make predictions for the 3d Ising model. Our analysis of dispersion relations via complex tauberian theorems is very general and could be useful in many other contexts.

Keywords

Conformal Field Theory Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].Google Scholar
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, SpringerBriefs in Physics (2016) [ https://doi.org/10.1007/978-3-319-43626-5] [arXiv:1601.05000] [INSPIRE].zbMATHCrossRefGoogle Scholar
  5. [5]
    D. Simmons-Duffin, The Conformal Bootstrap, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, U.S.A., 1–26 June 2015, pp. 1–74 (2017) [DOI:10.1142/9789813149441 0001] [arXiv:1602.07982] [INSPIRE].
  6. [6]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Mazac, Analytic bounds and emergence of AdS2 physics from the conformal bootstrap, JHEP04 (2017) 146 [arXiv:1611.10060] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
  9. [9]
    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP11 (2007) 019 [arXiv:0708.0672] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal Bootstrap At Large Charge, JHEP05 (2018) 043 [arXiv:1710.11161] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev.D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Rychkov and P. Yvernay, Remarks on the Convergence Properties of the Conformal Block Expansion, Phys. Lett.B 753 (2016) 682 [arXiv:1510.08486] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  18. [18]
    J. Korevaar, Tauberian theory: a century of development, Springer (2004).Google Scholar
  19. [19]
    A.G. Postnikov, Tauberian theory and its applications, American Mathematical Soc. (1980).Google Scholar
  20. [20]
    M.A. Subhankulov, Tauberian Theorems with Remainder (in Russian), Izdat. Nauka, Moscow (1976).Google Scholar
  21. [21]
    M.A. Subhankulov and F.I. An, Complex tauberian theorems for the one-sided and two-sided Stieltjes transform, Math. USSR Izv.8 (1974) 145.zbMATHCrossRefGoogle Scholar
  22. [22]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    R. Dolen, D. Horn and C. Schmid, Finite energy sum rules and their application to pi N charge exchange, Phys. Rev.166 (1968) 1768 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Igi, pi-N Scattering Length and Singularities in the Complex J Plane, Phys. Rev. Lett.9 (1962) 76 [INSPIRE].
  25. [25]
    K. Igi and S. Matsuda, New Sum Rules and Singularities in the Complex J Plane, Phys. Rev. Lett.18 (1967) 625 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.A. Logunov, L.D. Soloviev and A.N. Tavkhelidze, Dispersion sum rules and high-energy scattering, Phys. Lett.24B (1967) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Veneziano, Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo Cim.A 57 (1968) 190 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Qiao and S. Rychkov, A tauberian theorem for the conformal bootstrap, JHEP12 (2017) 119 [arXiv:1709.00008] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP07 (2018) 085 [arXiv:1711.03816] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP11 (2017) 193 [arXiv:1702.08471] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    A. Erdélyi et al., Higher Transcendental Functions, vol. 1, McGraw Hill, New York (1953).Google Scholar
  33. [33]
    L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP04 (2017) 157 [arXiv:1510.08091] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    E. Witten, Baryons in the 1/n Expansion, Nucl. Phys.B 160 (1979) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    V.N. Gribov, The theory of complex angular momenta: Gribov lectures on theoretical physics, Cambridge University Press (2007) [INSPIRE].
  38. [38]
    D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP12 (2011) 071 [arXiv:1108.4417] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    N. Gromov, V. Kazakov and G. Korchemsky, Exact Correlation Functions in Conformal Fishnet Theory, JHEP08 (2019) 123 [arXiv:1808.02688] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    S. Caron-Huot, Asymptotics of thermal spectral functions, Phys. Rev.D 79 (2009) 125009 [arXiv:0903.3958] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  44. [44]
    S.B. Giddings and R.A. Porto, The Gravitational S-matrix, Phys. Rev.D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    D. Das, S. Datta and S. Pal, Universal asymptotics of three-point coefficients from elliptic representation of Virasoro blocks, Phys. Rev.D 98 (2018) 101901 [arXiv:1712.01842] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys.B 270 (1986) 186 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    S. Hellerman, A Universal Inequality for CFT and Quantum Gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    S. Collier, Y.-H. Lin and X. Yin, Modular Bootstrap Revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    N. Lashkari, A. Dymarsky and H. Liu, Eigenstate Thermalization Hypothesis in Conformal Field Theory, J. Stat. Mech.1803 (2018) 033101 [arXiv:1610.00302] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  51. [51]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  52. [52]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) Models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    E. Katz, S. Sachdev, E.S. Sørensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: Operator product expansions, Monte Carlo and holography, Phys. Rev.B 90 (2014) 245109 [arXiv:1409.3841] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  56. [56]
    M.A. Shifman, Quark hadron duality, in At the frontier of particle physics. Handbook of QCD. Vol. 1–3, Singapore, pp. 1447–1494, World Scientific (2001) [ https://doi.org/10.1142/9789812810458_0032] [hep-ph/0009131] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    V.S. Vladimirov and B.I. Zavyalov, Tauberian theorem in quantum field theory, Theor. Math. Phys.40 (1980) 660 [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A.
  2. 2.CERN, Theoretical Physics DepartmentGenevaSwitzerland

Personalised recommendations