Journal of High Energy Physics

, 2019:263 | Cite as

Non-singular string cosmology via α′ corrections

  • Peng Wang
  • Houwen WuEmail author
  • Haitang Yang
  • Shuxuan Ying
Open Access
Regular Article - Theoretical Physics


In string theory, an important challenge is to show if the big-bang singularity could be resolved by the higher derivative α′ corrections. In this work, based on the Hohm-Zwiebach action, we construct a series of non-singular non-perturbative cosmological solutions with the complete α′ corrections, for the bosonic gravi-dilaton system. In the perturbative regime, these solutions exactly match the perturbative results given in literature. Our results show that the big-bang singularity indeed could be smoothed out by the higher derivative α′ corrections.


Bosonic Strings Nonperturbative Effects Spacetime Singularities String Duality 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    G. Veneziano, Scale factor duality for classical and quantum strings, Phys. Lett. B 265 (1991) 287 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Sen, O(d) ⊗ O(d) symmetry of the space of cosmological solutions in string theory, scale factor duality and two-dimensional black holes, Phys. Lett. B 271 (1991) 295 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Sen, Twisted black p-brane solutions in string theory, Phys. Lett. B 274 (1992) 34 [hep-th/9108011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A.A. Tseytlin, Duality and dilaton, Mod. Phys. Lett. A 6 (1991) 1721 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A.A. Tseytlin and C. Vafa, Elements of string cosmology, Nucl. Phys. B 372 (1992) 443 [hep-th/9109048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Veneziano, String cosmology: The pre-Big bang scenario, in proceedings of the 71st Les Houches Summer School: The Primordial Universe, 28 June–23 July 1999, Les Houches, France, in The primordial universe — L’univers primordial , Les Houches — Ecole d’Ete de Physique Theorique Series, volume 71, Springer (2000), pp. 581–628 [hep-th/0002094] [INSPIRE].
  7. [7]
    M. Gasperini and G. Veneziano, The Pre-big bang scenario in string cosmology, Phys. Rept. 373 (2003) 1 [hep-th/0207130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Gasperini and G. Veneziano, String Theory and Pre-big bang Cosmology, Nuovo Cim. C 38 (2016) 160 [hep-th/0703055] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Gasperini and G. Veneziano, Pre-big bang in string cosmology, Astropart. Phys. 1 (1993) 317 [hep-th/9211021] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Gasperini, M. Giovannini and G. Veneziano, Perturbations in a nonsingular bouncing universe, Phys. Lett. B 569 (2003) 113 [hep-th/0306113] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Gasperini, Elements of String Cosmology, Cambridge University Press, Cambridge U.K.. (2007).CrossRefGoogle Scholar
  12. [12]
    B. Zwiebach, Curvature Squared Terms and String Theories, Phys. Lett. B 156 (1985) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Gasperini, M. Maggiore and G. Veneziano, Towards a nonsingular pre-big bang cosmology, Nucl. Phys. B 494 (1997) 315 [hep-th/9611039] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.A. Easson, Towards a stringy resolution of the cosmological singularity, Phys. Rev. D 68 (2003) 043514 [hep-th/0304168] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    O. Hohm and B. Zwiebach, Duality Invariant Cosmology to all Orders in α′ , arXiv:1905.06963 [INSPIRE].
  16. [16]
    T. Biswas, A. Mazumdar and W. Siegel, Bouncing universes in string-inspired gravity, JCAP 03 (2006) 009 [hep-th/0508194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Biswas, T. Koivisto and A. Mazumdar, Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity, JCAP 11 (2010) 008 [arXiv:1005.0590] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K.A. Meissner, Symmetries of higher order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    K.A. Meissner and G. Veneziano, Symmetries of cosmological superstring vacua, Phys. Lett. B 267 (1991) 33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Wang, H. Wu and H. Yang, Are nonperturbative AdS vacua possible in bosonic string theory?, Phys. Rev. D 100 (2019) 046016 [arXiv:1906.09650] [INSPIRE].ADSGoogle Scholar
  22. [22]
    O. Hohm and B. Zwiebach, T-duality Constraints on Higher Derivatives Revisited, JHEP 04 (2016) 101 [arXiv:1510.00005] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    O. Hohm and B. Zwiebach, Non-perturbative de Sitter vacua via α′ corrections, arXiv:1905.06583 [INSPIRE].
  24. [24]
    C. Krishnan, de Sitter, α′ -Corrections and Duality Invariant Cosmology, arXiv:1906.09257 [INSPIRE].
  25. [25]
    M. Gasperini, J. Maharana and G. Veneziano, From trivial to nontrivial conformal string backgrounds via O(d, d) transformations, Phys. Lett. B 272 (1991) 277 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Peng Wang
    • 1
  • Houwen Wu
    • 1
    Email author
  • Haitang Yang
    • 1
  • Shuxuan Ying
    • 1
  1. 1.College of PhysicsSichuan UniversityChengduChina

Personalised recommendations