Advertisement

Journal of High Energy Physics

, 2019:260 | Cite as

The scales of black holes with nAdS2 geometry

  • Junho HongEmail author
  • Finn Larsen
  • James T. Liu
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We study nearly extreme black holes with nearly AdS2 horizon geometry in various settings inspired by string theory. Our focus is on the scales of the nAdS2 region and their relation to microscopic theory. These scales are determined by a generalization of the attractor mechanism for extremal black holes and realized geometrically as the normal derivatives along the extremal attractor flow. In some cases the scales are equivalently determined by the charge dependence of the extremal attractor by itself. Our examples include near extreme black holes in D ≥ 4 dimensions, AdS boundary conditions, rotation, and 5D black holes on the non-BPS branch.

Keywords

Black Holes in String Theory AdS-CFT Correspondence 2D Gravity Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  3. [3]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. B 126 (1983) 41.ADSCrossRefGoogle Scholar
  5. [5]
    R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS 2 /nCFT 1 correspondence, JHEP 10 (2018) 042 [arXiv:1807.06988] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    U. Moitra, S.K. Sake, S.P. Trivedi and V. Vishal, Jackiw-Teitelboim Gravity and Rotating Black Holes, arXiv:1905.10378 [INSPIRE].
  9. [9]
    A. Castro and V. Godet, Breaking away from the near horizon of extreme Kerr, arXiv:1906.09083 [INSPIRE].
  10. [10]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  11. [11]
    A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015).Google Scholar
  12. [12]
    V. Rosenhaus, An introduction to the SYK model, arXiv:1807.03334 [INSPIRE].
  13. [13]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D. Astefanesei et al., Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Dabholkar, J. Gomes and S. Murthy, Nonperturbative black hole entropy and Kloosterman sums, JHEP 03 (2015) 074 [arXiv:1404.0033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    F. Larsen, A nAttractor mechanism for nAdS 2 /nCFT 1 holography, JHEP 04 (2019) 055 [arXiv:1806.06330] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Larsen, The attractor mechanism in five dimensions, Lect. Notes Phys. 755 (2008) 249 [hep-th/0608191] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    J. Preskill et al., Limitations on the statistical description of black holes, Mod. Phys. Lett. A 6 (1991) 2353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Almheiri and B. Kang, Conformal symmetry breaking and thermodynamics of near-extremal black holes, JHEP 10 (2016) 052 [arXiv:1606.04108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    R.A. Davison et al., Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    U. Moitra, S.P. Trivedi and V. Vishal, Extremal and near-extremal black holes and near-CFT 1, JHEP 07 (2019) 055 [arXiv:1808.08239] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Sachdev, Universal low temperature theory of charged black holes with AdS 2 horizons, J. Math. Phys. 60 (2019) 052303 [arXiv:1902.04078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Behrndt, M. Cvetič and W.A. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys. B 475 (1996) 679 [hep-th/9604042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].ADSGoogle Scholar
  33. [33]
    F. Larsen, J. Nian and Y. Zeng, AdS 5 black hole entropy near the BPS limit, arXiv:1907.02505 [INSPIRE].
  34. [34]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    D.D.K. Chow and G. Compère, Seed for general rotating non-extremal black holes of \( \mathcal{N} \) = 8 supergravity, Class. Quant. Grav. 31 (2014) 022001 [arXiv:1310.1925] [INSPIRE].Google Scholar
  36. [36]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W.A. Sabra, General BPS black holes in five-dimensions, Mod. Phys. Lett. A 13 (1998) 239 [hep-th/9708103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Günaydin, G. Sierra and P.K. Townsend, The geometry of N = 2 Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].
  39. [39]
    A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I. Antoniadis, S. Ferrara and T.R. Taylor, N = 2 heterotic superstring and its dual theory in five-dimensions, Nucl. Phys. B 460 (1996) 489 [hep-th/9511108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    B.L. Cerchiai, S. Ferrara, A. Marrani and B. Zumino, Charge orbits of extremal black holes in five dimensional supergravity, Phys. Rev. D 82 (2010) 085010 [arXiv:1006.3101] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Ferrara and M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A 13 (1998) 2075 [hep-th/9708025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S. Bellucci, S. Ferrara, M. Günaydin and A. Marrani, Charge orbits of symmetric special geometries and attractors, Int. J. Mod. Phys. A 21 (2006) 5043 [hep-th/0606209] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    S. Ferrara and A. Marrani, On the moduli space of non-BPS attractors for N = 2 symmetric manifolds, Phys. Lett. B 652 (2007) 111 [arXiv:0706.1667] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Leinweber Center for Theoretical Physics, Randall Laboratory of PhysicsThe University of MichiganAnn ArborU.S.A.

Personalised recommendations