Advertisement

Journal of High Energy Physics

, 2019:258 | Cite as

Carroll membranes

  • Dibakar RoychowdhuryEmail author
Open Access
Article
  • 17 Downloads

Abstract

We explore Carroll limit corresponding to M2 as well as M3 branes propagating over 11D supergravity backgrounds in M theory. In the first part of the analysis, we introduce the membrane Carroll limit associated to M2 branes propagating over M theory supergravity backgrounds. Considering two specific M2 brane embeddings, we further outline the solutions corresponding to the Hamilton’s dynamical equations in the Carroll limit. We further consider the so called stringy Carroll limit associated to M2 branes and outline the corresponding solutions to the underlying Hamilton’s equations of motion by considering specific M2 brane embeddings over 11D target space geometry. As a further illustration of our analysis, considering the Nambu-Goto action, we show the equivalence between different world-volume descriptions in the Carroll limit of M2 branes. Finally, considering the stringy Carroll limit, we explore the constraint structure as well as the Hamiltonian dynamics associated to unstable M3 branes in 11D supergravity and obtain the corresponding effective world-volume description around their respective tachyon vacua.

Keywords

M-Theory Space-Time Symmetries Tachyon Condensation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Lévy-Leblond, Une nouvelle limite non-relativiste du group de Poincaré, Ann. Inst. Henri Poincaré 3 (1965) 1.Google Scholar
  2. [2]
    V.D. Sen Gupta, On an analogue of the Galileo group, Nuovo Cim. 54 (1966) 512.ADSCrossRefGoogle Scholar
  3. [3]
    H. Bacry and J. Levy-Leblond, Possible kinematics, J. Math. Phys. 9 (1968) 1605 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups, J. Phys. A 47 (2014) 335204 [arXiv:1403.4213] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  5. [5]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D.M. Hofman and B. Rollier, Warped conformal field theory as lower spin gravity, Nucl. Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll particles, Class. Quant. Grav. 31 (2014) 205009 [arXiv:1405.2264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Bergshoeff, J. Gomis and L. Parra, The symmetries of the Carroll superparticle, J. Phys. A 49 (2016) 185402 [arXiv:1503.06083] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    J. Kowalski-Glikman and T. Trzésniewski, Deformed Carroll particle from 2 + 1 gravity, Phys. Lett. B 737 (2014) 267 [arXiv:1408.0154] [INSPIRE].
  11. [11]
    B. Cardona, J. Gomis and J.M. Pons, Dynamics of Carroll strings, JHEP 07 (2016) 050 [arXiv:1605.05483] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Hartong, Gauging the Carroll algebra and ultra-relativistic gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Barducci, R. Casalbuoni and J. Gomis, Confined dynamical systems with Carroll and Galilei symmetries, Phys. Rev. D 98 (2018) 085018 [arXiv:1804.10495] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    A. Barducci, R. Casalbuoni and J. Gomis, Vector SUSY models with Carroll or Galilei invariance, Phys. Rev. D 99 (2019) 045016 [arXiv:1811.12672] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    T.E. Clark and T. ter Veldhuis, AdS-Carroll Branes, J. Math. Phys. 57 (2016) 112303 [arXiv:1605.05484] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    E. Bergshoeff et al., Carroll versus Galilei gravity, JHEP 03 (2017) 165 [arXiv:1701.06156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll symmetry of plane gravitational waves, Class. Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Ciambelli et al., Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids, Class. Quant. Grav. 35 (2018) 165001 [arXiv:1802.05286] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    R. Basu and U.N. Chowdhury, Dynamical structure of Carrollian Electrodynamics, JHEP 04 (2018) 111 [arXiv:1802.09366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  21. [21]
    M. Alishahiha and M. Ghasemkhani, Orbiting membranes in M-theory on AdS 7 × S 4 background, JHEP 08 (2002) 046 [hep-th/0206237] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Alishahiha and A.E. Mosaffa, Circular semiclassical string solutions on confining AdS/CFT backgrounds, JHEP 10 (2002) 060 [hep-th/0210122] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    J. Brugues, J. Rojo and J.G. Russo, Non-perturbative states in type-II superstring theory from classical spinning membranes, Nucl. Phys. B 710 (2005) 117 [hep-th/0408174] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.A. Hartnoll and C. Núñez, Rotating membranes on G2 manifolds, logarithmic anomalous dimensions and N = 1 duality, JHEP 02 (2003) 049 [hep-th/0210218] [INSPIRE].
  25. [25]
    P. Bozhilov, Membrane solutions in M-theory, JHEP 08 (2005) 087 [hep-th/0507149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Bozhilov, Exact rotating membrane solutions on a G 2 manifold and their semiclassical limits, JHEP 03 (2006) 001 [hep-th/0511253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Bozhilov, M2-brane solutions in AdS 7 × S 4 , JHEP 10 (2003) 032 [hep-th/0309215] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Bozhilov and R.C. Rashkov, Magnon-like dispersion relation from M-theory, Nucl. Phys. B 768 (2007) 193 [hep-th/0607116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Kim, N. Kim and J. Hun Lee, Rotating membranes in AdS 4 × M 1,1,1 , JHEP 03 (2010) 122 [arXiv:1001.2902] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Axenides, E. Floratos and G. Linardopoulos, Stringy membranes in AdS/CFT, JHEP 08 (2013) 089 [arXiv:1306.0220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    K.A. Intriligator, M. Kleban and J. Kumar, Comments on unstable branes, JHEP 02 (2001) 023 [hep-th/0101010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    L. Houart and Y. Lozano, Brane descent relations in M-theory, Phys. Lett. B 479 (2000) 299 [hep-th/0001170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J. Kluson, Note about unstable M 3-brane action, Phys. Rev. D 79 (2009) 026001 [arXiv:0810.0585] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett. B 76 (1978) 409.ADSCrossRefGoogle Scholar
  35. [35]
    J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Multiple Membranes in M-theory, Phys. Rept. 527 (2013) 1 [arXiv:1203.3546] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations