Advertisement

Journal of High Energy Physics

, 2019:249 | Cite as

On the Regge limit of Fishnet correlators

  • Subham Dutta ChowdhuryEmail author
  • Parthiv Haldar
  • Kallol Sen
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We study the Regge trajectories of the Mellin amplitudes of the 0-,1- and 2-magnon correlators of the Fishnet theory. Since fishnet theory is both integrable and conformal, the correlation functions are known exactly. We find that while for 0 and 1 magnon correlators, the Regge poles can be exactly determined as a function of coupling, 2-magnon correlators can only be dealt with perturbatively. We evaluate the resulting Mellin amplitudes at weak coupling, while for strong coupling we do an order of magnitude calculation.

Keywords

Conformal Field Theory Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    O. Gürdoğan and V. Kazakov, New integrable 4D quantum field theories from strongly deformed planar \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 201602 [arXiv:1512.06704] [INSPIRE].Google Scholar
  2. [2]
    N. Gromov, V. Kazakov and G. Korchemsky, Exact correlation functions in conformal fishnet theory, JHEP 08 (2019) 123 [arXiv:1808.02688] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G.P. Korchemsky, Exact scattering amplitudes in conformal fishnet theory, JHEP 08 (2019) 028 [arXiv:1812.06997] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Regge, Introduction to complex orbital momenta, Nuovo Cim. 14 (1959) 951 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M.A. Virasoro, Alternative constructions of crossing-symmetric amplitudes with Regge behavior, Phys. Rev. 177 (1969) 2309 [INSPIRE].
  6. [6]
    G.P. Korchemsky, Bethe ansatz for QCD Pomeron, Nucl. Phys. B 443 (1995) 255 [hep-ph/9501232] [INSPIRE].
  7. [7]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    V. Kazakov, Quantum spectral curve of γ-twisted \( \mathcal{N} \) = 4 SYM theory and fishnet CFT, arXiv:1802.02160 [INSPIRE].
  9. [9]
    D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory as an integrable conformal field theory, Phys. Rev. Lett. 120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].Google Scholar
  10. [10]
    L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
  11. [11]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal methods in AdS/CFT: BFKL pomeron at weak coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].
  12. [12]
    J. Fokken, C. Sieg and M. Wilhelm, Non-conformality of γ i -deformed N = 4 SYM theory, J. Phys. A 47 (2014) 455401 [arXiv:1308.4420] [INSPIRE].
  13. [13]
    C. Sieg and M. Wilhelm, On a CFT limit of planar γ i -deformed \( \mathcal{N} \) = 4 SYM theory, Phys. Lett. B 756 (2016) 118 [arXiv:1602.05817] [INSPIRE].
  14. [14]
    A. B. Zamolodchikov, ‘Fishnet’ diagrams as a completely integrable system, Phys. Lett. B 97 (1980) 63.Google Scholar
  15. [15]
    D. Chicherin et al., Yangian symmetry for bi-scalar loop amplitudes, JHEP 05 (2018) 003 [arXiv:1704.01967] [INSPIRE].
  16. [16]
    N. Gromov et al., Integrability of conformal fishnet theory, JHEP 01 (2018) 095 [arXiv:1706.04167] [INSPIRE].
  17. [17]
    V.K. Dobrev et al., Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].
  18. [18]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].
  19. [19]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].
  20. [20]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  21. [21]
    G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  22. [22]
    G.P. Korchemsky, On level crossing in conformal field theories, JHEP 03 (2016) 212 [arXiv:1512.05362] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    V. Kazakov and E. Olivucci, Biscalar integrable conformal field theories in any dimension, Phys. Rev. Lett. 121 (2018) 131601 [arXiv:1801.09844] [INSPIRE].
  24. [24]
    V. Kazakov, E. Olivucci and M. Preti, Generalized fishnets and exact four-point correlators in chiral CFT 4 , JHEP 06 (2019) 078 [arXiv:1901.00011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Pittelli and M. Preti, Integrable fishnet from γ-deformed \( \mathcal{N} \) = 2 quivers, arXiv:1906.03680 [INSPIRE].
  26. [26]
    J. Caetano, O. Gürdoğan and V. Kazakov, Chiral limit of \( \mathcal{N} \) = 4 SYM and ABJM and integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].
  27. [27]
    N. Gromov and A. Sever, Quantum fishchain in AdS 5, JHEP 10 (2019) 085 [arXiv:1907.01001] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Gromov and A. Sever, Derivation of the holographic dual of a planar conformal field theory in 4D, Phys. Rev. Lett. 123 (2019) 081602 [arXiv:1903.10508] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia
  2. 2.Center for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  3. 3.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoChibaJapan

Personalised recommendations