Advertisement

Journal of High Energy Physics

, 2019:246 | Cite as

Localized thermal states and negative energy

  • Felipe RossoEmail author
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We construct localized states defined in a ball or the half-space of a conformal field theory (CFT) in Minkowski that are thermal with respect to the local modular flow. We compute their energy density at arbitrary temperature for a variety of CFTs, and find values for which it is negative and divergent at the boundary. Despite this singular behavior we show that the energy measured by an observer is consistent with the bounds present in the literature. For holographic CFTs these states are captured by hyperbolic black holes in anti-de Sitter, where the negative energy in field theory amounts to the well known negative mass of the black hole. As a byproduct, we show that the Casini-Huerta-Myers proof of the Ryu-Takayangi holographic entanglement formula for the vacuum reduced to a ball can be naturally extended to include half-space regions.

Keywords

Conformal Field Theory AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    E.E. Flanagan, Quantum inequalities in two-dimensional Minkowski space-time, Phys. Rev. D 56 (1997) 4922 [gr-qc/9706006] [INSPIRE].
  2. [2]
    C.J. Fewster and S.P. Eveson, Bounds on negative energy densities in flat space-time, Phys. Rev. D 58 (1998) 084010 [gr-qc/9805024] [INSPIRE].
  3. [3]
    C.J. Fewster and E. Teo, Bounds on negative energy densities in static space-times, Phys. Rev. D 59 (1999) 104016 [gr-qc/9812032] [INSPIRE].
  4. [4]
    M.J. Pfenning, Quantum inequalities for the electromagnetic field, Phys. Rev. D 65 (2002) 024009 [gr-qc/0107075] [INSPIRE].
  5. [5]
    C.J. Fewster and B. Mistry, Quantum weak energy inequalities for the Dirac field in flat space-time, Phys. Rev. D 68 (2003) 105010 [gr-qc/0307098] [INSPIRE].
  6. [6]
    H.-w. Yu and P.-x. Wu, Quantum inequalities for the free Rarita-Schwinger fields in flat space-time, Phys. Rev. D 69 (2004) 064008 [gr-qc/0312071] [INSPIRE].
  7. [7]
    C.J. Fewster and S. Hollands, Quantum energy inequalities in two-dimensional conformal field theory, Rev. Math. Phys. 17 (2005) 577 [math-ph/0412028] [INSPIRE].
  8. [8]
    D. Blanco, H. Casini, M. Leston and F. Rosso, Modular energy inequalities from relative entropy, JHEP 01 (2018) 154 [arXiv:1711.04816] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C.J. Fewster, Lectures on quantum energy inequalities, arXiv:1208.5399 [INSPIRE].
  10. [10]
    L.H. Ford, Quantum coherence effects and the second law of thermodynamics, Proc. Roy. Soc. Lond. A 364 (1978) 227 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L.H. Ford, Constraints on negative energy fluxes, Phys. Rev. D 43 (1991) 3972 [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.S. Morris, K.S. Thorne, and U. Yurtsever, Wormholes, time machines, and the weak energy condition, Phys. Rev. Lett. 61 (1988) 1446.ADSCrossRefGoogle Scholar
  13. [13]
    A. Ori, Must time machine construction violate the weak energy condition?, Phys. Rev. Lett. 71 (1993) 2517 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    M. Alcubierre, The warp drive: hyperfast travel within general relativity, Class. Quant. Grav. 11 (1994) L73 [gr-qc/0009013] [INSPIRE].
  15. [15]
    J. Natário, Warp drive with zero expansion, Class. Quant. Grav. 19 (2002) 1157 [gr-qc/0110086] [INSPIRE].
  16. [16]
    R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular hamiltonians for deformed half-spaces and the averaged null energy condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    T. Hartman, S. Kundu and A. Tajdini, Averaged null energy condition from causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A general proof of the quantum null energy condition, JHEP 09 (2019) 020 [arXiv:1706.09432] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    F. Ceyhan and T. Faulkner, Recovering the QNEC from the ANEC, arXiv:1812.04683 [INSPIRE].
  22. [22]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].
  25. [25]
    J. Koeller, S. Leichenauer, A. Levine and A. Shahbazi-Moghaddam, Local modular Hamiltonians from the quantum null energy condition, Phys. Rev. D 97 (2018) 065011 [arXiv:1702.00412] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    S. Leichenauer, A. Levine and A. Shahbazi-Moghaddam, Energy density from second shape variations of the von Neumann entropy, Phys. Rev. D 98 (2018) 086013 [arXiv:1802.02584] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    C.-I. Kuo and L.H. Ford, Semiclassical gravity theory and quantum fluctuations, Phys. Rev. D 47 (1993) 4510 [gr-qc/9304008] [INSPIRE].
  28. [28]
    D. Stoler, Equivalence classes of minimum uncertainty packets, Phys. Rev. D 1 (1970) 3217 [INSPIRE].ADSGoogle Scholar
  29. [29]
    M.J. Pfenning, Quantum inequality restrictions on negative energy densities in curved space-times, Ph.D. thesis, Tufts University, Medford, U.S.A. (1998), gr-qc/9805037 [INSPIRE].
  30. [30]
    D.N. Vollick, Negative energy density states for the Dirac field in flat space-time, Phys. Rev. D 57 (1998) 3484 [gr-qc/9806064] [INSPIRE].
  31. [31]
    L.H. Ford, A.D. Helfer and T.A. Roman, Spatially averaged quantum inequalities do not exist in four-dimensional space-time, Phys. Rev. D 66 (2002) 124012 [gr-qc/0208045] [INSPIRE].
  32. [32]
    H.-w. Yu and W.-x. Shu, Quantum states with negative energy density in the Dirac field and quantum inequalities, Phys. Lett. B 570 (2003) 123 [hep-th/0307102] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    L.H. Ford and T.A. Roman, Negative energy density in superposition and entangled states, Phys. Rev. D 77 (2008) 045018 [arXiv:0705.3003] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E. Elizalde, The vacuum energy density for spherical and cylindrical universes, J. Math. Phys. 35 (1994) 3308 [hep-th/9308048] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    M.J. Pfenning and L.H. Ford, Quantum inequalities on the energy density in static Robertson-Walker space-times, Phys. Rev. D 55 (1997) 4813 [gr-qc/9608005] [INSPIRE].
  36. [36]
    C.P. Herzog and K.-W. Huang, Stress tensors from trace anomalies in conformal field theories, Phys. Rev. D 87 (2013) 081901 [arXiv:1301.5002] [INSPIRE].ADSGoogle Scholar
  37. [37]
    C.P. Herzog, K.-W. Huang and K. Jensen, Universal entanglement and boundary geometry in conformal field theory, JHEP 01 (2016) 162 [arXiv:1510.00021] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    L.S. Brown and G.J. Maclay, Vacuum stress between conducting plates: An Image solution, Phys. Rev. 184 (1969) 1272 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    H.B.G. Casimir, On the attraction between two perfectly conducting plates, Indag. Math. 10 (1948) 261 [Kon. Ned. Akad. Wetensch. Proc. 100N3-4 (1997) 61].Google Scholar
  40. [40]
    P. Candelas and D. Deutsch, On the vacuum stress induced by uniform acceleration or supporting the ether, Proc. Roy. Soc. Lond. A 354 (1977) 79 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    P. Candelas and D. Deutsch, Fermion fields in accelerated states, Proc. Roy. Soc. Lond. A 362 (1978) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P.C.W. Davies and S.A. Fulling, Radiation from a moving mirror in two-dimensional space-time conformal anomaly, Proc. Roy. Soc. Lond. A 348 (1976) 393 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    L.H. Ford and A. Vilenkin, Quantum radiation by moving mirrors, Phys. Rev. D 25 (1982) 2569 [INSPIRE].ADSGoogle Scholar
  44. [44]
    L.H. Ford and T.A. Roman, Moving mirrors, black holes and cosmic censorship, Phys. Rev. D 41 (1990) 3662 [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    R. Haag, Local quantum physics: fields, particles, algebras, Springer, Germany (1992).Google Scholar
  46. [46]
    E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Hollands and K. Sanders, Entanglement measures and their properties in quantum field theory, arXiv:1702.04924 [INSPIRE].
  48. [48]
    J.S. Dowker, Entanglement entropy for even spheres, arXiv:1009.3854 [INSPIRE].
  49. [49]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    F. Rosso, Holography of negative energy states, Phys. Rev. D 99 (2019) 026002 [arXiv:1809.04793] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  54. [54]
    J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    P. Candelas and J.S. Dowker, Field theories on conformally related space-times: some global considerations, Phys. Rev. D 19 (1979) 2902 [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1997).Google Scholar
  59. [59]
    L.S. Brown and J.P. Cassidy, Stress tensors and their trace anomalies in conformally flat space-times, Phys. Rev. D 16 (1977) 1712 [INSPIRE].ADSGoogle Scholar
  60. [60]
    T.S. Bunch, Stress tensor of massless conformal quantum fields in hyperbolic universes, Phys. Rev. D 18 (1978) 1844 [INSPIRE].ADSGoogle Scholar
  61. [61]
    G. Denardo and E. Spallucci, Vacuum instability in the Einstein open metric, Nuovo Cim. A 68 (1982) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M.R. Brown, A.C. Ottewill and S.T.C. Siklos, Comments on conformal killing vector fields and quantum field theory, Phys. Rev. D 26 (1982) 1881 [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    J.D. Pfautsch, A new vacuum state in de Sitter space, Phys. Lett. B 117 (1982) 283.ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    D.N. Page, Thermal stress tensors in static Einstein spaces, Phys. Rev. D 25 (1982) 1499 [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    A.A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini, Quantum fields and extended objects in space-times with constant curvature spatial section, Phys. Rept. 266 (1996) 1 [hep-th/9505061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    V. Moretti and L. Vanzo, Thermal Wightman functions and renormalized stress tensors in the Rindler wedge, Phys. Lett. B 375 (1996) 54 [hep-th/9507139] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    D. Iellici and V. Moretti, Zeta function regularization and one loop renormalization of field fluctuations in curved space-times, Phys. Lett. B 425 (1998) 33 [gr-qc/9705077] [INSPIRE].
  68. [68]
    Z. Haba, A relationship between scalar Green functions on hyperbolic and Euclidean Rindler spaces, J. Phys. A 40 (2007) 8535 [hep-th/0703199] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    H.T. Cho and B.L. Hu, Noise kernels of stochastic gravity in conformally-flat spacetimes, Class. Quant. Grav. 32 (2015) 055006 [arXiv:1407.3907] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Renyi entropies for free field theories, JHEP 04 (2012) 074 [arXiv:1111.6290] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  71. [71]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  74. [74]
    J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  75. [75]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys. 90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    S.S. Pufu, The F-theorem and F-maximization, J. Phys. A 50 (2017) 443008 [arXiv:1608.02960] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  79. [79]
    C.J. Fewster, Comments on ‘Counter example to the quantum inequality‘, gr-qc/0409043 [INSPIRE].
  80. [80]
    S. Krasnikov, Quantum inequalities and their application, Grav. Cosmol. 12 (2006) 195 [gr-qc/0409007] [INSPIRE].
  81. [81]
    A.R. Levine, A holographic dual of the quantum inequalities, arXiv:1605.05751 [INSPIRE].
  82. [82]
    C.J. Fewster and E. Teo, Quantum inequalities and ‘quantum interest’ as eigenvalueproblems, Phys. Rev. D 61 (2000) 084012 [gr-qc/9908073] [INSPIRE].
  83. [83]
    C.V. Johnson and F. Rosso, Holographic heat engines, entanglement entropy and renormalization group flow, Class. Quant. Grav. 36 (2019) 015019 [arXiv:1806.05170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    D. Kubiznak, R.B. Mann and M. Teo, Black hole chemistry: thermodynamics with Λ, Class. Quant. Grav. 34 (2017) 063001 [arXiv:1608.06147] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    V. Rosenhaus and M. Smolkin, Entanglement entropy for relevant and geometric perturbations, JHEP 02 (2015) 015 [arXiv:1410.6530] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].ADSMathSciNetGoogle Scholar
  87. [87]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  88. [88]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].
  89. [89]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  90. [90]
    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Renyi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  91. [91]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  93. [93]
    D. Giataganas and N. Tetradis, Entanglement entropy, horizons and holography, Phys. Lett. B 796 (2019) 88 [arXiv:1904.13119] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  94. [94]
    J.C. Baez, Renyi entropy and free energy, arXiv:1102.2098.
  95. [95]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    D.N. Kabat and M.J. Strassler, A comment on entropy and area, Phys. Lett. B 329 (1994) 46 [hep-th/9401125] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J.S. Dowker, Remarks on geometric entropy, Class. Quant. Grav. 11 (1994) L55 [hep-th/9401159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].ADSMathSciNetGoogle Scholar
  99. [99]
    X. Dong, The gravity dual of Renyi entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    A. Belin et al., Holographic charged Renyi entropies, JHEP 12 (2013) 059 [arXiv:1310.4180] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    C.V. Johnson, Physical generalizations of the Ŕenyi entropy, Int. J. Mod. Phys. D 28 (2019) 1950091 [arXiv:1807.09215] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    A. Belin, A. Maloney and S. Matsuura, Holographic Phases of Renyi Entropies, JHEP 12 (2013) 050 [arXiv:1306.2640] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge U.K. (1984).Google Scholar
  104. [104]
    M. Bander and C. Itzykson, Group theory and the hydrogen atom. II, Rev. Mod. Phys. 38 (1966) 346 [INSPIRE].
  105. [105]
    I. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, Academic Press, Elsevier, Amsterdam, Netherlands (2007).zbMATHGoogle Scholar
  106. [106]
    A. Erdelyi, Higher transcendental functions. Volume 1, McGraw-Hill Book Company Inc., U.S.A. (1953).Google Scholar
  107. [107]
    L.E. Parker and D. Toms, Quantum field theory in curved spacetime, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2009).zbMATHCrossRefGoogle Scholar
  108. [108]
    K. Meng and L. Zhao, C-metric solution for conformal gravity with a conformally coupled scalar field, Annals Phys. 377 (2017) 466 [arXiv:1601.07634] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    S. Hyun, W.T. Kim and J. Lee, Statistical entropy and AdS/CFT correspondence in BTZ black holes, Phys. Rev. D 59 (1999) 084020 [hep-th/9811005] [INSPIRE].ADSMathSciNetGoogle Scholar
  110. [110]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  111. [111]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSMathSciNetGoogle Scholar
  112. [112]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].ADSMathSciNetGoogle Scholar
  113. [113]
    Y. Brihaye and E. Radu, Five-dimensional rotating black holes in Einstein-Gauss-Bonnet theory, Phys. Lett. B 661 (2008) 167 [arXiv:0801.1021] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaCaliforniaU.S.A.

Personalised recommendations