Journal of High Energy Physics

, 2019:245 | Cite as

Electroweak breaking and Higgs boson profile in the simplest linear seesaw model

  • Duarte Fontes
  • Jorge C. RomãoEmail author
  • J. W. F. Valle
Open Access
Regular Article - Theoretical Physics


We examine the simplest realization of the linear seesaw mechanism within the Standard Model gauge structure. Besides the standard scalar doublet, there are two lepton-number-carrying scalars, a nearly inert SU(2)L doublet and a singlet. Neutrino masses result from the spontaneous violation of lepton number, implying the existence of a Nambu-Goldstone boson. Such “majoron” would be copiously produced in stars, leading to stringent astrophysical constraints. We study the profile of the Higgs bosons in this model, including their effective couplings to the vector bosons and their invisible decay branching ratios. A consistent electroweak symmetry breaking pattern emerges with a compressed spectrum of scalars in which the “Standard Model” Higgs boson can have a sizeable invisible decay into the invisible majorons.


Beyond Standard Model Higgs Physics Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    T. Kajita, Nobel Lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 (2016) 030501 [INSPIRE].
  2. [2]
    A.B. McDonald, Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos, Rev. Mod. Phys. 88 (2016) 030502 [INSPIRE].
  3. [3]
    KamLAND collaboration, First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].
  4. [4]
    K2K collaboration, Indications of neutrino oscillation in a 250 KM long baseline experiment, Phys. Rev. Lett. 90 (2003) 041801 [hep-ex/0212007] [INSPIRE].
  5. [5]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  6. [6]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. 98B (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].
  8. [8]
    A.S. Joshipura and J.W.F. Valle, Invisible Higgs decays and neutrino physics, Nucl. Phys. B 397 (1993) 105 [INSPIRE].
  9. [9]
    S.M. Boucenna, S. Morisi and J.W.F. Valle, The low-scale approach to neutrino masses, Adv. High Energy Phys. 2014 (2014) 831598 [arXiv:1404.3751] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
  11. [11]
    M.C. Gonzalez-Garcia and J.W.F. Valle, Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models, Phys. Lett. B 216 (1989) 360 [INSPIRE].
  12. [12]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
  13. [13]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
  14. [14]
    M. Malinsky, J.C. Romão and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
  15. [15]
    N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].
  16. [16]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
  17. [17]
    J.C. Romão, F. de Campos and J.W.F. Valle, New Higgs signatures in supersymmetry with spontaneous broken R parity, Phys. Lett. B 292 (1992) 329 [hep-ph/9207269] [INSPIRE].
  18. [18]
    O.J.P. Eboli, M.C. Gonzalez-Garcia, A. Lopez-Fernandez, S.F. Novaes and J.W.F. Valle, Searching for an invisibly decaying Higgs boson in e + e , eγ and γγ collisions, Nucl. Phys. B 421 (1994) 65 [hep-ph/9312278] [INSPIRE].
  19. [19]
    F. De Campos, M.A. Garcia-Jareno, A.S. Joshipura, J. Rosiek, J.W.F. Valle and D.P. Roy, Limits on associated production of visibly and invisibly decaying Higgs bosons from Z decays, Phys. Lett. B 336 (1994) 446 [hep-ph/9407328] [INSPIRE].
  20. [20]
    J.C. Romão, J.L. Diaz-Cruz, F. de Campos and J.W.F. Valle, Detection of intermediate mass Higgs bosons from spontaneously broken R-parity supersymmetry, Mod. Phys. Lett. A 9 (1994) 817 [hep-ph/9211258] [INSPIRE].
  21. [21]
    F. de Campos, M.A. Garcia-Jareno, A.S. Joshipura, J. Rosiek and J.W.F. Valle, Novel scalar boson decays in SUSY with broken r parity, Nucl. Phys. B 451 (1995) 3 [hep-ph/9502237] [INSPIRE].
  22. [22]
    F. de Campos, O.J.P. Eboli, J. Rosiek and J.W.F. Valle, Searching for invisibly decaying Higgs bosons at LEP-2, Phys. Rev. D 55 (1997) 1316 [hep-ph/9601269] [INSPIRE].
  23. [23]
    M.A. Diaz, M.A. Garcia-Jareno, D.A. Restrepo and J.W.F. Valle, Seesaw Majoron model of neutrino mass and novel signals in Higgs boson production at LEP, Nucl. Phys. B 527 (1998) 44 [hep-ph/9803362] [INSPIRE].
  24. [24]
    M. Hirsch, J.C. Romão, J.W.F. Valle and A. Villanova del Moral, Invisible Higgs boson decays in spontaneously broken R-parity, Phys. Rev. D 70 (2004) 073012 [hep-ph/0407269] [INSPIRE].
  25. [25]
    M. Hirsch, J.C. Romão, J.W.F. Valle and A. Villanova del Moral, Production and decays of supersymmetric Higgs bosons in spontaneously broken R-parity, Phys. Rev. D 73 (2006) 055007 [hep-ph/0512257] [INSPIRE].
  26. [26]
    C. Bonilla, J.W.F. Valle and J.C. Romão, Neutrino mass and invisible Higgs decays at the LHC, Phys. Rev. D 91 (2015) 113015 [arXiv:1502.01649] [INSPIRE].
  27. [27]
    C. Bonilla, J.C. Romão and J.W.F. Valle, Electroweak breaking and neutrino mass: ‘invisible’ Higgs decays at the LHC (type-II seesaw), New J. Phys. 18 (2016) 033033 [arXiv:1511.07351] [INSPIRE].
  28. [28]
    CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
  29. [29]
    ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].
  30. [30]
    CEPC Study Group collaboration, CEPC Conceptual Design Report: Volume 2 — Physics & Detector, arXiv:1811.10545 [INSPIRE].
  31. [31]
    FCC collaboration, FCC-ee: The Lepton Collider, Eur. Phys. J. ST 228 (2019) 261 [INSPIRE].
  32. [32]
    P. Bambade et al., The International Linear Collider: A Global Project, arXiv:1903.01629 [INSPIRE].
  33. [33]
    J. de Blas et al., The CLIC Potential for New Physics, arXiv:1812.02093 [INSPIRE].
  34. [34]
    V. Berezinsky and J.W.F. Valle, The KeV majoron as a dark matter particle, Phys. Lett. B 318 (1993) 360 [hep-ph/9309214] [INSPIRE].
  35. [35]
    M. Lattanzi and J.W.F. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99 (2007) 121301 [arXiv:0705.2406] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Bazzocchi, M. Lattanzi, S. Riemer-Sørensen and J.W.F. Valle, X-ray photons from late-decaying majoron dark matter, JCAP 08 (2008) 013 [arXiv:0805.2372] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Lattanzi, S. Riemer-Sorensen, M. Tortola and J.W.F. Valle, Updated CMB and x- and γ-ray constraints on Majoron dark matter, Phys. Rev. D 88 (2013) 063528 [arXiv:1303.4685] [INSPIRE].
  38. [38]
    M. Lattanzi, R.A. Lineros and M. Taoso, Connecting neutrino physics with dark matter, New J. Phys. 16 (2014) 125012 [arXiv:1406.0004] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.-L. Kuo, M. Lattanzi, K. Cheung and J.W.F. Valle, Decaying warm dark matter and structure formation, JCAP 12 (2018) 026 [arXiv:1803.05650] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Heeck, Majorons as cold light dark matter, PoS(NOW2018)093 (2018) [arXiv:1809.09413] [INSPIRE].
  41. [41]
    M. Reig, J.W.F. Valle and M. Yamada, Light majoron cold dark matter from topological defects and the formation of boson stars, JCAP 09 (2019) 029 [arXiv:1905.01287] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S.M. Boucenna, S. Morisi, Q. Shafi and J.W.F. Valle, Inflation and majoron dark matter in the seesaw mechanism, Phys. Rev. D 90 (2014) 055023 [arXiv:1404.3198] [INSPIRE].
  43. [43]
    G. Lazarides, M. Reig, Q. Shafi, R. Srivastava and J.W.F. Valle, Spontaneous Breaking of Lepton Number and the Cosmological Domain Wall Problem, Phys. Rev. Lett. 122 (2019) 151301 [arXiv:1806.11198] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.P. Das, F.F. Deppisch, O. Kittel and J.W.F. Valle, Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC, Phys. Rev. D 86 (2012) 055006 [arXiv:1206.0256] [INSPIRE].
  45. [45]
    F.F. Deppisch, N. Desai and J.W.F. Valle, Is charged lepton flavor violation a high energy phenomenon?, Phys. Rev. D 89 (2014) 051302 [arXiv:1308.6789] [INSPIRE].
  46. [46]
    M. Hirsch, S. Morisi and J.W.F. Valle, A4-based tri-bimaximal mixing within inverse and linear seesaw schemes, Phys. Lett. B 679 (2009) 454 [arXiv:0905.3056] [INSPIRE].
  47. [47]
    D.V. Forero, S. Morisi, M. Tortola and J.W.F. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, JHEP 09 (2011) 142 [arXiv:1107.6009] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.W.F. Valle, Resonant Oscillations of Massless Neutrinos in Matter, Phys. Lett. B 199 (1987) 432 [INSPIRE].
  49. [49]
    S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the Leptonic Mixing Matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].
  50. [50]
    F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tortola and J.W.F. Valle, On the description of nonunitary neutrino mixing, Phys. Rev. D 92 (2015) 053009 [Erratum ibid. D 93 (2016) 119905] [arXiv:1503.08879] [INSPIRE].
  51. [51]
    O.G. Miranda and J.W.F. Valle, Neutrino oscillations and the seesaw origin of neutrino mass, Nucl. Phys. B 908 (2016) 436 [arXiv:1602.00864] [INSPIRE].
  52. [52]
    O.G. Miranda, M. Tortola and J.W.F. Valle, New ambiguity in probing CP-violation in neutrino oscillations, Phys. Rev. Lett. 117 (2016) 061804 [arXiv:1604.05690] [INSPIRE].
  53. [53]
    K.G. Klimenko, On Necessary and Sufficient Conditions for Some Higgs Potentials to Be Bounded From Below, Theor. Math. Phys. 62 (1985) 58 [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    M.P. Bento, H.E. Haber, J.C. Romão and J.P. Silva, Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds, JHEP 11 (2017) 095 [arXiv:1708.09408] [INSPIRE].
  55. [55]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A Precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].
  56. [56]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Choi and A. Santamaria, Majorons and Supernova Cooling, Phys. Rev. D 42 (1990) 293 [INSPIRE].
  58. [58]
    J.W.F. Valle, Gauge theories and the physics of neutrino mass, Prog. Part. Nucl. Phys. 26 (1991) 91 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, ATLAS-CONF-2015-044.
  60. [60]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb 1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2019-005.
  61. [61]
    P. Bechtle et al., HiggsBounds 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].
  62. [62]
    D. Fontes, J.C. Romão and J.P. Silva, h → Z γ in the complex two Higgs doublet model, JHEP 12 (2014) 043 [arXiv:1408.2534] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de Física and CFTP, Instituto Superior Técnico, Universidade de LisboaLisboaPortugal
  2. 2.AHEP Group, Institut de Física Corpuscular — C.S.I.C./Universitat de ValènciaPaternaSpain

Personalised recommendations