Advertisement

Journal of High Energy Physics

, 2019:241 | Cite as

Weyl fermions in a non-abelian gauge background and trace anomalies

  • Fiorenza BastianelliEmail author
  • Matteo Broccoli
Open Access
Article
  • 26 Downloads

Abstract

We study the trace and chiral anomalies of Weyl fermions in a non-abelian gauge background in four dimensions. Using a Pauli-Villars regularization we identify the trace anomaly, proving that it can be cast in a gauge invariant form, even in the presence of the non-abelian chiral anomaly, that we rederive to check the consistency of our methods. In particular, we find that the trace anomaly does not contain any parity-odd topological contribution, whose presence has been debated in the recent literature.

Keywords

Anomalies in Field and String Theories Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    W.A. Bardeen, Anomalous Ward identities in spinor field theories, Phys. Rev. 184 (1969) 1848 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Bastianelli and M. Broccoli, On the trace anomaly of a Weyl fermion in a gauge background, Eur. Phys. J. C 79 (2019) 292 [arXiv:1808.03489] [INSPIRE].
  3. [3]
    M. Forger and H. Romer, Currents and the energy momentum tensor in classical field theory: a fresh look at an old problem, Annals Phys. 309 (2004) 306 [hep-th/0307199] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Diaz, W. Troost, P. van Nieuwenhuizen and A. Van Proeyen, Understanding Fujikawa regulators from Pauli- Villars regularization of ghost loops, Int. J. Mod. Phys. A 4 (1989) 3959 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Hatsuda, P. van Nieuwenhuizen, W. Troost and A. Van Proeyen, The regularized phase space path integral measure for a scalar field coupled to gravity, Nucl. Phys. B 335 (1990) 166 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Fujikawa, Comment on chiral and conformal anomalies, Phys. Rev. Lett. 44 (1980) 1733 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    L. Alvarez-Gaume and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Nakayama, CP-violating CFT and trace anomaly, Nucl. Phys. B 859 (2012) 288 [arXiv:1201.3428] [INSPIRE].
  10. [10]
    Y. Nakayama, Realization of impossible anomali es, Phys. Rev. D 98 (2018) 085002 [arXiv:1804.02940] [INSPIRE].
  11. [11]
    Y. Nakayama, Conformal contact terms and semi-local terms, arXiv:1906.07914 [INSPIRE].
  12. [12]
    S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    L. Bonora, S. Giaccari and B. Lima de Souza, Trace anomalies in chiral theories revisited, JHEP 07 (2014) 117 [arXiv:1403.2606] [INSPIRE].
  14. [14]
    L. Bonora, M. Cvitan, P. Dominis Prester, A. Duarte Pereira, S. Giaccari and T. Stemberga, Axial gravity, massless fermions and trace anomalies, Eur. Phys. J. C 77 (2017) 511 [arXiv:1703.10473] [INSPIRE].
  15. [15]
    L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, M. Paulisic and T. Stemberga, Axial gravity: a non-perturbative approach to split anomalies, Eur. Phys. J. C 78 (2018) 652 [arXiv:1807.01249] [INSPIRE].
  16. [16]
    F. Bastianelli and R. Martelli, On the trace anomaly of a Weyl fermion, JHEP 11 (2016) 178 [arXiv:1610.02304] [INSPIRE].
  17. [17]
    M.B. Frob and J. Zahn, Trace anomaly for chiral fermions via Hadamard subtraction, arXiv:1904.10982 [INSPIRE].
  18. [18]
    F. Bastianelli and M. Broccoli, Axial gravity and anomalies of fermions, in preparation.Google Scholar
  19. [19]
    B.S. DeWitt, Dynamical theory of groups and fields, Conf. Proc. C 630701 (1964) 585 [INSPIRE].
  20. [20]
    B.S. DeWitt, The spacetime approach to quantum field theory, in "Relativity, groups and topology II", proceedings of the Les Houches Summer School1983, B.S. De Witt and R. Stora eds., North Holland, Amsterdam, The Netherlands (1984) [INSPIRE].
  21. [21]
    F. Bastianelli, The path integral for a particle in curved spaces and Weyl anomalies, Nucl. Phys. B 376 (1992) 113 [hep-th/9112035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl. Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D.V. Vassilevich, Heat kernel expansion: user's manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dipartimemo di Fisica ed AstronomiaUmversità di Bologna and INFNBolognaItaly
  2. 2.Max-Planck-lnstitut für Gmvitationsphymk (Albert-Einstein-Institut)GolmGermany

Personalised recommendations