Advertisement

Journal of High Energy Physics

, 2019:236 | Cite as

Prospects for disentangling long- and short-distance effects in the decays B → Kμ+μ

  • Marcin Chrzaszcz
  • Andrea MauriEmail author
  • Nicola Serra
  • Rafael Silva Coutinho
  • Danny van Dyk
Open Access
Regular Article - Experimental Physics
  • 13 Downloads

Abstract

Theory uncertainties on non-local hadronic effects limit the New Physics discovery potential of the rare decays B → Kμ+μ. We investigate prospects to disentangle New Physics effects in the short-distance coefficients from these effects. Our approach makes use of an event-by-event amplitude analysis, and relies on a particular parametrisation of the non-local contributions. We find that non-standard effects in the short-distance coefficients can be successfully disentangled from non-local hadronic effects. The impact of the truncation on the parametrisation of non-local contributions to the Wilson coefficients are for the first time systematically examined and prospects for their precise determination are discussed. Theoretical inputs on the non-local matrix elements beyond the physically- accessible phase space are crucial to stabilise the determination of Wilson coefficients, while we find that physical observables are unaffected by these uncertainties. Compared to other methods, our approach provides for a more precise extraction of the angular observables from data.

Keywords

B physics Beyond Standard Model Flavour Changing Neutral Currents Hadron-Hadron scattering (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    LHCb collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73 (2013) 2373 [arXiv:1208.3355] [INSPIRE].
  2. [2]
    LHCb collaboration, Measurement of form-factor-independent observables in the decay B 0 → K 0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  3. [3]
    S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, Implications from clean observables for the binned analysis of B → K ∗ μ + μ at large recoil, JHEP 01 (2013) 048 [arXiv:1207.2753] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    LHCb collaboration, Angular analysis of the B 0 → K 0 μ + μ decay using 3 fb 1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  5. [5]
    Belle collaboration, Lepton-flavor-dependent angular analysis of B → K £ + £ , Phys. Rev. Lett. 118 (2017) 111801 [arXiv:1612.05014] [INSPIRE].
  6. [6]
    G. Hiller and F. Krüger, More model-independent analysis of b → s processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].
  7. [7]
    LHCb collaboration, Test of lepton universality using B + → K + £ + £ decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  8. [8]
    LHCb collaboration, Test of lepton universality with B 0 → K 0 £ + £ decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  9. [9]
    C. Bobeth, G. Hiller and D. van Dyk, General analysis of B ̄ → K ̄ () £ + £ decays at low recoil, Phys. Rev. D 87 (2013) 034016 [arXiv:1212.2321] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Bobeth, M. Chrzaszcz, D. van Dyk and J. Virto, Long-distance effects in B → K ££ from analyticity, Eur. Phys. J. C 78 (2018) 451 [arXiv:1707.07305] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Ali, G.F. Giudice and T. Mannel, Towards a model independent analysis of rare B decays, Z. Phys. C 67 (1995) 417 [hep-ph/9408213] [INSPIRE].
  12. [12]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V l + l , V γ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].
  14. [14]
    M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak b → d and b → s penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [INSPIRE].
  15. [15]
    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in B → K () £ + £ and B → K γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Lyon and R. Zwicky, Resonances gone topsy turvy - the charm of QCD or new physics in b → s£ + £ ?, arXiv:1406.0566 [INSPIRE].
  17. [17]
    M. Ciuchini et al., B → K £ + £ decays at large recoil in the standard model: a theoretical reappraisal, JHEP 06 (2016) 116 [arXiv:1512.07157] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    LHCb collaboration, Measurement of the phase difference between short- and long-distance amplitudes in the B + → K + μ + μ decay, Eur. Phys. J. C 77 (2017) 161 [arXiv:1612.06764] [INSPIRE].
  19. [19]
    M. Ciuchini et al., On flavourful easter eggs for new physics hunger and lepton flavour universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    T. Blake, U. Egede, P. Owen, K.A. Petridis and G. Pomery, An empirical model to determine the hadronic resonance contributions to B 0 → K 0 μ + μ transitions, Eur. Phys. J. C 78 (2018) 453 [arXiv:1709.03921] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Krüger, L.M. Sehgal, N. Sinha and R. Sinha, Angular distribution and CP asymmetries in the decays B ̄ → K π + e e + and B ̄ → π π + e e + , Phys. Rev. D 61 (2000) 114028 [Erratum ibid. D 63 (2001) 019901] [hep-ph/9907386] [INSPIRE].
  22. [22]
    F. Krüger and J. Matias, Probing new physics via the transverse amplitudes of B 0 → K 0 (→ K π + )l + l at large recoil, Phys. Rev. D 71 (2005) 094009 [hep-ph/0502060] [INSPIRE].
  23. [23]
    M. Dimou, J. Lyon and R. Zwicky, Exclusive chromomagnetism in heavy-to-light FCNCs, Phys. Rev. D 87 (2013) 074008 [arXiv:1212.2242] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Bobeth, G. Hiller and G. Piranishvili, CP asymmetries in bar B → K ̄ (→ K ̄ π)£ ̄ £ and untagged B ̄ s , Bs → φ(→ K + K )£ ̄ £ decays at NLO, JHEP 07 (2008) 106 [arXiv:0805.2525] [INSPIRE].
  25. [25]
    W. Altmannshofer et al., Symmetries and asymmetries of B → K μ + μ decays in the Standard Model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Bharucha, D.M. Straub and R. Zwicky, B → V £ + £ in the Standard Model from light-cone sum rules, JHEP 08 (2016) 098 [arXiv:1503.05534] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    UTfit collaboration, The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: a reappraisal after the measurements ofm s and BR(B → τ ν t au), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].
  28. [28]
    D. van Dyk et al., EOS — A HEP Program for Flavour Observables, (2018).Google Scholar
  29. [29]
    S. Descotes-Genon, J. Matias and J. Virto, Understanding the B → K μ + μ anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].ADSGoogle Scholar
  30. [30]
    W. Altmannshofer and D.M. Straub, New physics in B → K μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [Erratum ibid. C 74 (2014) 3179] [arXiv:1310.2478] [INSPIRE].
  32. [32]
    T. Hurth and F. Mahmoudi, On the LHCb anomaly in B → K £ + £ , JHEP 04 (2014) 097 [arXiv:1312.5267] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    F. Beaujean, C. Bobeth and S. Jahn, Constraints on tensor and scalar couplings from B → K μμ and Bs → μμ, Eur. Phys. J. C 75 (2015) 456 [arXiv:1508.01526] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Paul and D.M. Straub, Constraints on new physics from radiative B decays, JHEP 04 (2017) 027 [arXiv:1608.02556] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Jäger, M. Kirk, A. Lenz and K. Leslie, Charming new physics in rare B-decays and mixing?, Phys. Rev. D 97 (2018) 015021 [arXiv:1701.09183] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Mauri, N. Serra and R. Silva Coutinho, Towards establishing lepton flavour universality violation in B → K ££ decays, Phys. Rev. D 99 (2019) 013007 [arXiv:1805.06401]ADSGoogle Scholar
  37. [37]
    LHCb collaboration, Measurements of the S-wave fraction in B 0 → K + π μ + μ decays and the B 0 → K (892)0 μ + μ differential branching fraction, JHEP 11 (2016) 047 [Erratum ibid. 04 (2017) 142] [arXiv:1606.04731] [INSPIRE].
  38. [38]
    J. Matias, On the S-wave pollution of B → K ∗ £ + £ observables, Phys. Rev. D 86 (2012) 094024 [arXiv:1209.1525] [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Blake, U. Egede and A. Shires, The effect of S-wave interference on the B 0 → K 0 £ + £ angular observables, JHEP 03 (2013) 027 [arXiv:1210.5279] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Becirevic and A. Tayduganov, Impact of B → K £ + £ on the new physics search in B → K £ + £ decay, Nucl. Phys. D 868 (2013) 368 [arXiv:1207.4004] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Aston et al., A study of K π + scattering in the reaction K p → K π + n at 11 GeV/c, Nucl. Phys. B 296 (1988) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.A. Bailey et al., B → K l + l decay form factors from three-flavor lattice QCD, Phys. Rev. D 93 (2016) 025026 [arXiv:1509.06235] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Marcin Chrzaszcz
    • 1
    • 2
    • 3
  • Andrea Mauri
    • 2
    Email author
  • Nicola Serra
    • 2
  • Rafael Silva Coutinho
    • 2
  • Danny van Dyk
    • 2
    • 4
  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland
  2. 2.Universität Zürich, Physik InstitutZürichSwitzerland
  3. 3.Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of SciencesKrakówPoland
  4. 4.Physik DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations